Klasifikasi Sel Darah Putih Menggunakan Metode Support Vector Machine (SVM) Berbasis Pengolahan Citra Digital
Bhima Caraka(1*), Bakhtiar Alldino Ardi Sumbodo(2), Ika Candradewi(3)
(1) Universitas Gadjah Mada
(2) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(3) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author
Abstract
White blood cells are classified into five types (basophils, eosinophils, neutrophils, lymphocytes and monocytes) with additional classes lymphoblast cells from microscope images are processed. By applying image processing, image its white blood cells extracted using the Histogram Oriented Gradient. Feature extraction results obtained then classified using Support Vector Machine method by comparing the results of two different kernel parameters: kernel Linear and kernel Radial Basis Function (RBF). Classification evaluated with these parameters: Accuracy, specificity, and sensitivity.
Obtained an accuracy of 72.26% from the detection of white blood cells in the microscope image. The average value of microscope images of patients and different kernel every white blood cells (monocytes, basophils, neutrophils, eosinophils, lymphocytes and lymphoblast) were evaluated with these parameters. Results of the study show the classification system has an average value of 82.20% accuracy (RBF Patient 1), 81.63% (RBF Patient 2) and 78.73% (Linear Patient 1), 79.55% (Linear Patient 2 ), then the value of specificity of 89.91% (RBF patient 1), 92.18% (RBF patient 2) and 88.06% (Linear patient 1), 91.34% (Linear patient 2), and sensitivity values 15 , 45% (RBF patient 1), 12.97% (RBF patient 2) and 13.33% (Linear patient 1), 12.50% (Linear patient 2).
Keywords
Full Text:
PDFReferences
[1] Wallace, D.J., 2007, The Lupus Book, Penerbit B-First, Yogyakarta, Hal: 21-23.
[2] Rubenstein, D., Wayne, D. and Bradley, J., 2007, Lecture Notes: Kedokteran Klinis,
Penerbit Erlangga, Yogyakarta, Hal: 366.
[3] Tambayong, J., 2000, Patofisiologi Untuk Keperawatan, Penerbit Buku Kedokteran EGC, Jakarta, Hal: 80.
[4] Davey, P., 2006, Medicine At Glance, Penerbit Erlangga, Jakarta, Hal: 159.
[5] Khasanah, M.N., 2015, Klasifikasi Sel Darah Putih Berdasarkan Ciri Warna dan Bentuk dengan Metode K-Nearest Neighbour (KNN), Skripsi, Program Studi S1 Elektronika dan Instrumentasi FMIPA UGM, Yogyakarta.
[6] Kimbahune, V.V., 2011, Blood Cell Image Segmentation and Counting, International. Journal of Engineering Science and Technology, pp 24482453.
[7] Candradewi, I., Jabbar, H.A.A., Harjoko, A., Hartati, S., Setiawan, D.A., Sholeh, F.I., 2014. Segmentasi Sel Blast pada Otomatisasi Sistem Deteksi Leukemia Limpoistik Akut (ALL), Prosiding Seminar Nasional Ilmu Komputer, Yogyakarta: 2014.
[8] Culjak, I., Abram, D., Pribanic, T., Dzapo, H. dan Cifrek, M., 2012, A brief introduction to OpenCV, MIPRO, 2012 Proceedings of the 35th International Convention, Croatia, May 21-25
[9] Hiremath, P.S., Bannigidad, P. and Geeta, S., 2010, Automated Identification and Classification of White Blood Cells (Leukocytes) in Digital Microscopic Images, I.J.C.A. Special Issue on Recent Trends in Image Processing and Pattern Recognition (RTIPPR), Hal: 59.
[10] Nugroho, A.S., Witarto, A.B. dan Handoko, D., 2003, Support Vector Machine (Teori dan Aplikasinya dalam Bioinformatika), Proceeding of Indonesian Scientific Meeting in Central Japan, Gifu.
[11] Piuri, V. and Scotti, F., 2004, Morphological Classification of Blood Leucocytes by Microscope Images, Tugas Akhir, Department of Information Technologies University of Milan, Italy.
DOI: https://doi.org/10.22146/ijeis.15420
Article Metrics
Abstract views : 6965 | views : 41585Refbacks
- There are currently no refbacks.
Copyright (c) 2017 IJEIS - Indonesian Journal of Electronics and Instrumentation Systems
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1