Pemodelan Harmonik untuk Pelafalan Makhraj Huruf Hijaiah
Muhammad Fadhlullah(1*), Catur Atmaji(2)
(1) Program Studi Elektronika dan Instrumentasi, FMIPA UGM, Yogyakarta
(2) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author
Abstract
Learning to pronounce hijaiah letters needs to be assessed objectively, so it is necessary to form digital audio resulting from the synthesis of Harmonic Plus Residual (HPR) modeling, which conducted with two pronunciation methods, taskin and tasydid. The experiment consists data acquisition, signal cutting, framing and windowing, detection of fundamental and harmonic frequencies, synthesis of HPR, to produce synthetic signals. The results of the synthetic signals then analyzed qualitatively by signal spectrogram analysis and scoring.
From the experimental results, it can be concluded that this study was ultimately unable to determine the best HPR parameters, but concluded that the tasydid method was the best method for learning pronunciation and for the HPR model synthesis. This is because the tasydid method with different parameters but all of them can produce good synthetic signal, both in terms of comparative analysis of similar signal spectrograms and from the results of scoring with an average value of 10. On the other hand, the taskin method harf shows unsatisfactory results, where the synthetic sound is mostly just noise, so the scoring results is under 9, and is reinforced by the results of the spectrogram comparison between the original and synthetic signals which visually different.
Keywords
Full Text:
PDFReferences
[1]
Yulyawati, "Implementasi Metode At-Tibyan dalam Pembelajaran Membaca Al-Qur'an untuk Anak Usia Dini," Universitas Pendidikan Indonesia, Bandung, 2016.
[2]
A. N. Wahidah, M. Suriazalmi, M. Niza, H. Rosyati, N. Faradila, A. Hasan, A. Rohana and Z. Farizan, "Makhraj Recognition Using Speech Processing," 2011.
[3]
E. S. Wahyuni, "Arabic Speech Recognition using MFCC Feature Extraction and ANN Classification," 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), pp. 22-25, 2017.
[4]
H. A. Rahim, Tajwid Praktis As-Shafa, Makassar: Lembaga Penerbitan Universitas Hasanuddin, 2018.
[5]
D. Pratiwi, "Analisis Kesulitan Belajar Membaca Al-Qur'an pada Siswa Kelas VIII SMP Muhammadiyah 1 Surakarta Tahun Pelajaran 2016/2017," Universitah Muhammadiyah Surakarta, Surakarta, 2017.
[6]
M. Subali, M. Andriansyah and C. Sinambela, "Analisis Frekuensi Dasar dan Frekuensi Formant dari Fonem Huruf Hijaiyah untuk Pengcuapan Makhraj dengan Metode DTW," Prosiding PESAT (Psikologi, Ekonomi, Sastra, Arsitektur & Teknik Sipil, vol. 6, pp. 60-73, 2015.
[7]
M. Subali, M. Andriansyah and C. Sinambela, "Pengucapan Makhraj dari Unit Bunyi Terkecil Huruf Hijaiyah berdasarkan Frekuensi Dasar dan Frekuensi Formant untuk Media Pembelajaran Alquran," ALQALAM, vol. 32, no. 2, pp. 284-308, 2015.
[8]
T. AlTalmas, W. Sediono, N. Hashim, S. Ahmad and S. Khairuddin, "Analysis of Two Adjacent Articulation Quranic Letters Based On MFCC and DTW," 7th International Conference on Computer and Communication Engineering (ICCCE), pp. 187-191, 2018.
[9]
F. B. Ali and D. S. Larbi, "A Long Term Harmonic plus Noise Model for Narrow-Band Speech Coding at Very Low Bit-Rates," International Conference on Telecommunications and Signal Processing (TSP), vol. 40th, pp. 372-376, 2017.
[10]
R. Rajan M, "Singing Voice Synthesis System for Carnatic Music," International Conference on Signal Processing and Integrated Networks (SPIN), vol. 5th, pp. 831-835, 2018.
[11]
A. Ferreira, J. Silva, F. Brito and D. Sinha, "Impact of A Shift-Invariant Harmonic Phase Model in Fully Parametric Harmonic Voice Representation and Time/Frequency Synthesis," International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 701-705, 2020.
[12]
Serra, Xavier, "Coursera: Audio Signal Processing for Music Applications," 2019. [Online]. Available: https://www.coursera.org/learn/audio-signal-processing/home/welcome. [Accessed 1 January 2021].
[13]
D. K. Pramesthi, “Cerita Nadytha Zildjian,” 2011. [Online]. Available: http://nadytha-zildjian.blogspot.com/2011/07/sekilas-tentang-mel-frequency-cepstral.html. [Diakses 14 Juni 2020].
[14]
P. K. Sari, K. Priandana and A. Buono, "Perbandingan Sistem Perhitungan Suara Tepuk Tangan dengan Metode Berbasis Frekuensi dan Metode Berbasis Amplitudo," Jurnal Ilmu Komputer Agri-Informatika, vol. 2, no. 1, pp. 29-37, 2013.
[15]
T. Nasution, "Metoda Mel Frequency Cepstrum Coefficients (MFCC) untuk mengenali Ucapan pada Bahasa Indonesia," Jurnal Sains dan Teknologi Informasi, vol. 1, no. 1, pp. 22-31, 2012.
[16]
Y. C. H. Siki, "Perbandingan Berbagai Waktu - Frekuensi Musik Gong Timur Menggunakan Short Time Fourier Transform dan Continous Wavelet Transform," Institut Teknologi Sepuluh Nopember, Surabaya, 2015.
[17]
Heriyanto, S. Hartati and A. E. Putra, "Ekstraksi Ciri Mel Frequency Cepstral Coefficient (MFCC) dan Rerata Coefficient untuk Pengecekan Bacaan Al-Qur'an," Telematika, vol. 15, no. 02, pp. 99-108, 2018.
[18]
D. K. Putra, I. I. Triasmoro and R. D. Atmaja, "Simulasi dan Analisis Speaker Recognition Menggunakan Metode Mel Frequency Cepstrum Coefficient (MFCC) dan Gaussian Mixture Model (GMM)," e-Proceeding of Engineering, vol. 4, no. 2, pp. 1766-1772, 2017.
DOI: https://doi.org/10.22146/ijeis.71664
Article Metrics
Abstract views : 1272 | views : 1123Refbacks
- There are currently no refbacks.
Copyright (c) 2022 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1