Implementasi Kontrol Nutrisi Dan pH Pada Hidroponik Cerdas Berbasis Arduino Dan JST

Muhammad Naufal Zul Hazmi(1*), Raden Sumiharto(2)

(1) Program Studi Elektronika dan Instrumentasi, DIKE, FMIPA, UGM, Yogyakarta
(2) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author


This research aims to implement an automated nutrition and pH control system in NFT hydroponic system based on ANN control. NFT hydroponics involves growing plants without soil as a medium. In hydroponics, it is essential to continuously control the nutrient levels and pH of the solution. However, manual control performed by humans continuously is inefficient and time-consuming.

The ANN method is used to model and predict the output actuators based on sensor input in the NFT hydroponic system. This ANN architecture consists of several layers with the following number of neurons: input layer 2, first hidden layer 128, second hidden layer 64, and output layer 3, representing multipleoutputs. The ANN training process involves classifying the data samples using various hyperparameters.

The research findings demonstrate the ANN classification model successfully applied to control pH and nutrient levels through the predicted output actuators. The pump actuators are activated according to input received from the TDS and pH sensors. Through the variation of hyperparameters, the classification model with a test_size: 0.3, epoch: 400, batch_size: 32, and random_state: 42 provided the best performance in prediction. This ANN classification model achieved the best results in model testing with an accuracy rate:  97.96% from 49 data.


Automated nutrition control; NFT Hydroponics system; ANN Classification model; Prediction

Full Text:



[1] Susilawati, Dasar – Dasar Bertanam Secara Hidroponik. Unsri Press, 2019.

[2] S. Wibowo and A. Asriyanti, “Aplikasi Hidroponik NFT pada Budidaya Pakcoy (Brassica rapa chinensis),” J. Penelit. Pertan. Terap., vol. 13, no. 3, pp. 159–167, 2013, [Online]. Available:

[3] T. E. Tallei, I. F. M. Rumengan, and A. A. Adam, Hidroponik untuk Pemula. LPPM UNSRAT, 2017.

[4] S. Swastika, A. Yulfida, and Y. Sumitro, Budidaya Sayuran Hidroponik. Balai Pengkajian Teknologi Pertanian, 2017. [Online]. Available:

[5] D. Graupe, Principles of Artificial Neural Networks, 3rd ed. World Scientific Publishing Company, 2013.

[6] D. Kartini, “Penerapan Data Mining dengan Algoritma Neural Network (Backpropagation) Untuk Prediksi Lama Studi Mahasiswa,” Pros. Semin. Nas. SISFOTEK, vol. 3584, pp. 235–241, 2017, [Online]. Available:

[7] S. Haykin, Neural Networks and Learning Machines, vol. 3. Prentice Hall, 2009. doi: 978-0131471399.

[8] F. Laurene, Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. 1994. doi: 10.1109/T-C.1969.222718.

[9] J. J. Siang, Jaringan Syaraf Tiruan dan Pemograman Menggunakan Matlab. Yogyakarta: Andi, 2005.

[10] J. Heaton, Artificial Intelligence for Humans Volume 3: Deep Learning and Neural Networks, 1st ed. CreateSpace Independent Publishing Platform, 2015. doi: 10.1007/978-1-4842-3450-1_5.


Article Metrics

Abstract views : 351 | views : 264


  • There are currently no refbacks.

Copyright (c) 2023 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright of :
IJEIS (Indonesian Journal of Electronics and Instrumentations Systems)
ISSN 2088-3714 (print); ISSN 2460-7681 (online)
is a scientific journal the results of Electronics
and Instrumentations Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133 |

View My Stats1
View My Stats2