Analyzing Burglary Dynamics through Land Use in Selangor, Kuala Lumpur, and Putrajaya: A Space-Time EHSA Approach

https://doi.org/10.22146/ijg.101678

Azizul Ahmad(1), Tarmiji Masron(2*), Syahrul Nizam Junaini(3), Mohd Azizul Hafiz Jamian(4), Mohamad Hardyman Barawi(5), Yoshinari Kimura(6), Norita Jubit(7), Ruslan Rainis(8)

(1) Centre for Spatially Integrated Digital Humanities (CSIDH), Faculty of Social Sciences & Humanities, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, MALAYSIA. Agricultural and Environmental Statistics Division (BPPAS), Department of Statistics Malaysia (DOSM), Federal Government Administrative Centre, Block C6, 62514 Wilayah Persekutuan Putrajaya, MALAYSIA
(2) Centre for Spatially Integrated Digital Humanities (CSIDH), Faculty of Social Sciences & Humanities, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, MALAYSIA
(3) Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, MALAYSIA
(4) Centre for Spatially Integrated Digital Humanities (CSIDH), Faculty of Social Sciences & Humanities, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, MALAYSIA
(5) Faculty of Cognitive Science and Human Development, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, MALAYSIA
(6) Graduate School of Literature and Human Sciences, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, JAPAN
(7) Borneo Institute for Indigenous Studies (BorIIS), Universiti Malaysia Sabah (UMS), 88400 Kota Kinabalu, Sabah, MALAYSIA
(8) Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, MALAYSIA
(*) Corresponding Author

Abstract


In response to the escalating incidence of burglary incidents in rapidly urbanizing metropolitan regions, this study innovatively integrates Emerging Hot Spot Analysis (EHSA) with Space-Time Pattern Mining (STPM) to examine the spatio-temporal dynamics of burglary across Selangor, Kuala Lumpur Federal Territory (KLFT) and Putrajaya Federal Territory (PFT) between 2015 and 2020. This paper aims to delineate the intricate interplay between urban land use configurations and the evolving patterns of burglary, thereby addressing critical research gaps in crime mapping and predictive resource allocation. The research employed robust methodological framework within the ArcGIS Pro 3.1 environment, the research stratifies crime data into four distinct temporal intervals to construct space-time netCDF cubes, applies the Getis-Ord Gi* statistic with False Discovery Rate (FDR) correction to identify statistically significant clusters, and utilizes the Mann-Kendall trend test to classify hotspots into eight categories (new, consecutive, intensifying, persistent, diminishing, sporadic, oscillating, and historical). The results reveal a nuanced spatial clustering of burglary incidents that is significantly influenced by varied land use types—ranging from residential and industrial zones to open spaces—thereby enhancing the granularity of hotspot detection and offering empirical insights into the temporal evolution of crime patterns. The study dinds that the integration of advanced geospatial analyses not only clarifies the complex dynamics between urban morphology and burglary occurrences but also provides a solid empirical basis for informed law enforcement and urban planning strategies. Moreover, these findings underscore the need for ongoing longitudinal investigations and the development of adaptive, data-driven models to refine predictive capabilities further and foster sustainable urban safety initiatives.


Keywords


Burglary crime; emerging hot spot analysis; property crime; space-time pattern mining

Full Text:

PDF


References

Adewuyi, T. O., Eneji, P. A., Baduku, A. S., & Olofin, E. A. (2017). Spatio-Temporal Analysis of Urban Crime Pattern and its Implication for Abuja Municipal Area Council, Nigeria. Indonesian Journal of Geography, 49(2), 145–154. https://doi.org/10.22146/ijg.15341

Ahmad, A., Masron, T., Junaini, S. N., Kimura, Y., Barawi, M. H., Jubit, N., Redzuan, M. S., Bismelah, L. H., & Mohd Ali, A. S. (2024). Mapping the Unseen: Dissecting Property Crime Dynamics in Urban Malaysia Through Spatial Analysis. Transactions in GIS, 28(6), 1486–1509. https://doi.org/10.1111/tgis.13197

Bowers, K. J. (2004). Prospective Hot-Spotting: The Future of Crime Mapping? British Journal of Criminology, 44(5), 641–658. https://doi.org/10.1093/bjc/azh036

Bunting, R. J., Chang, O. Y., Cowen, C., Hankins, R., Langston, S., Warner, A., Yang, X., Louderback, E. R., & Roy, S. Sen. (2018). Spatial Patterns of Larceny and Aggravated Assault in Miami-Dade County, 2007-2015. The Professional Geographer, 70(1), 34–46. https://doi.org/10.1080/00330124.2017.1310622

Campedelli, G. M., Favarin, S., Aziani, A., & Piquero, A. R. (2020). Disentangling Community-Level Changes in Crime Trends During the COVID-19 Pandemic in Chicago. Crime Science, 9(21). https://doi.org/10.1186/s40163-020-00131-8

Chainey, S., Tompson, L., & Uhlig, S. (2008). The Utility of Hotspot Mapping for Predicting. Security Journal, 21, 4–28. https://doi.org/10.1057/palgrave.sj.8350066

Chen, J., Lin, L., Suhong, Z., Luzi, X., Song, G., & Fang, R. (2017). Modeling Spatial Effect in Residential Burglary: A Case Study from ZG City, China. ISPRS International Journal of Geo-Information, 6(5). https://doi.org/10.3390/ijgi6050138

Cheng, T., & Williams, D. (2012). Space-Time Analysis of Crime Patterns in Central London. ISPRS-The International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. https://doi.org/10.5194/isprsarchives-XXXIX-B2-47-2012

Dewinter, M., Vandeviver, C., Dau, P. M., Beken, T. Vander, & Witlox, F. (2022). Hot Spots and Burning Times: A Spatiotemporal Analysis of Calls for Service to Establish Police Demand. Applied Geography, 143. https://doi.org/10.1016/j.apgeog.2022.102712

Felson, M., Xu, Y., & Jiang, S. (2022). Property Crime Specialization in Detroit, Michigan. Journal of Criminal Justice, 82(101953). https://doi.org/10.1016/j.jcrimjus.2022.101953

Hashim, H., Wan Mohd, W. M. N., Sadek, E. Md., & Dimyati, K. M. (2019). Modeling Urban Crime Patterns using Spatial Space Time and Regression Analysis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(4/W16), 247–254. https://doi.org/10.5194/isprs-archives-XLII-4-W16-247-2019

He, Z., Wang, Z., Gu, Y., & An, X. (2023). Measuring the Influence of Multiscale Geographic Space on the Heterogeneity of Crime Distribution. ISPRS International Journal of Geo-Information, 12(10), 437. https://doi.org/10.3390/ijgi12100437

Herrmann, C. R. (2015). The Dynamics of Robbery and Violence Hot Spots. Crime Science, 4(33). https://doi.org/10.1186/s40163-015-0042-5

Hu, Y., Wang, F., Guin, C., & Zhu, H. (2018). A Spatio-Temporal Kernel Density Estimation Framework for Predictive Crime Hotspot Mapping and Evaluation. Applied Geography, 99, 89–97. https://doi.org/10.1016/j.apgeog.2018.08.001

Jabatan Perangkaan Malaysia. (2022a). Penemuan Utama Banci Penduduk Dan Perumahan Malaysia, 2020 Negeri Wilayah Persekutuan Kuala Lumpur. https://bit.ly/PocketStatsQ1_2022

Jabatan Perangkaan Malaysia. (2022b). Penemuan Utama Banci Penduduk Dan Perumahan Malaysia, 2020 Negeri Wilayah Persekutuan Putrajaya. https://bit.ly/PocketStatsQ1_2022

Jamru, L. R., Hashim, M., Phua, M. H., Jafar, A., Sakke, N., Eboy, O. V., Imang, U., Natar, M., Ahmad, A., & Mohd Najid, S. A. (2024). Exploring Intensity Metrics in Raw LiDAR Data Processing for Tropical Forest. IOP Conference Series: Earth and Environmental Science, 12th IGRSM International Conference and Exhibition on Geospatial & Remote Sensing 29/04/2024 - 30/04/2024 Kuala Lumpur, Malaysia, 1412(012005), 1–13. https://doi.org/10.1088/1755-1315/1412/1/012005

Jubit, N., Masron, T., Redzuan, M. S., Ahmad, A., & Kimura, Y. (2024). Revealing Adolescent Drug Trafficking and Addiction: Exploring School Disciplinary and Drug Issues in The Federal Territory of Kuala Lumpur and Selangor, Malaysia. International Journal of Geoinformatics, 20(6), 1–12. https://doi.org/10.52939/ijg.v20i6.3327

Koper, C. S., Wu, X., & Lum, C. (2021). Calibrating Police Activity Across Hot Spot and Non-Hot Spot Areas. Police Quarterly, 24(3), 382–406. https://doi.org/10.1177/1098611121995809

Masron, T., Ahmad, A., Abdillah, K. K., Mohd Ali, A. S., Junaini, S. N., & Kimura, Y. (2025). Deciphering Property Crime through OLS Regression: A Demographic Study. International Social Science Journal. https://doi.org/10.1111/issj.12558

Masron, T., Ahmad, A., Jubit, N., Sulaiman, M. H., Rainis, R., Redzuan, M. S., Junaini, S. N., Jamian, M. A. H., Mohd Ali, A. S., Salleh, M. S., Zaini, F., Soda, R., & Kimura, Y. (2024). Crime Map Book. Centre for Spatially Integrated Digital Humanities (CSIDH), Faculty of Social Sciences and Humanities, Universiti Malaysia Sarawak. https://www.researchgate.net/publication/384572873_Crime_Map_Book

Masron, T., Wan Hussin, W. M. T., Nordin, M. N., Yaakub, N. F., & Jamian, M. A. H. (2019). Applying GIS in Analysing Black Spot Areas in Penang, Malaysia. Indonesian Journal of Geography, 50(2), 113–114. https://doi.org/10.22146/ijg.27440

Moews, B., Argueta Jr, J. R., & Gieschen, A. (2021). Filaments of Crime: Informing Policing via Thresholded Ridge Estimation. Decision Support Systems, 144(113518). https://doi.org/10.1016/j.dss.2021.113518

Mohd Ali, A. S., Masron, T., Junaini, S. N., Ahmad, A., & Soda, R. (2025). Ethnic Disparities and Demographic Shifts in Sarawak’s Aging Population: A Comprehensive Longitudinal Analysis (1980-2020). International Journal of Geoinformatics, 21(2), 106–122. https://doi.org/https://doi.org/10.52939/ijg.v21i2.3943

Parry, J., & Locke, D. H. (2022, May 31). Emerging Hot Spot Analysis. https://sfdep.josiahparry.com/articles/understanding-emerging-hotspots.html

Short, M. B., Brantingham, P. J., Bertozzi, A. L., & Tita, G. E. (2010). Dissipation and Displacement of Hotspots in Reaction-Diffusion Models of Crime. Proceedings of the National Academy of Sciences, 107(9), 3961–3965. https://doi.org/10.1073/pnas.0910921107

Trisnawati, D., & Khoirunurrofik, K. (2019). Inter-Provincial Spatial Linkages of Crime Pattern in Indonesia: Looking at Education and Economic Inequality Effects on Crime. Indonesian Journal of Geography, 51(2), 106–113. https://doi.org/10.22146/ijg.34026

Wang, Z., & Zhang, H. (2019). Understanding the Spatial Distribution of Crime in Hot Crime Areas. Singapore Journal of Tropical Geography, 40(3), 496–509. https://doi.org/10.1111/sjtg.12293

Zakaria, Y. S., Ariffin, N. A., Ahmad, A., Rainis, R., M. Muslim, A., & Wan Ibrahim, W. M. M. (2025). Optimizing Tuberculosis Treatment Predictions: A Comparative Study of XGBoost with Hyperparameter in Penang, Malaysia (Mengoptimumkan Peramalan Rawatan Tuberkulosis: Suatu Kajian Perbandingan XGBoost dengan Hiperparameter di Penang, Malaysia). Sains Malaysiana, 54(1), 3743–3754. https://doi.org/10.17576/jsm-2025-5401-22



DOI: https://doi.org/10.22146/ijg.101678

Article Metrics

Abstract views : 3159 | views : 862

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Authors and Indonesian Journal of Geography

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

The Indonesian Journal of Geography (ISSN 2354-9114 (online), ISSN 0024-9521 (print))  is an international journal published by the  Faculty of Geography, Universitas Gadjah Mada in collaboration with The Indonesian Geographers Association. The content of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

Web
Analytics IJG STATISTIC