Spatio-temporal variability of Temperature and rainfall in the Jabitehinan District in North West Ethiopia

https://doi.org/10.22146/ijg.102013

Addisu Bitew Birhanie(1*), Daniel Ayalew Mengistu(2)

(1) Department of Geography and Environmental Studies, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia and Department of Geography and Environmental Studies, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
(2) Department of Geography and Environmental Studies, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia and Geospatial Data and Technology Centre, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
(*) Corresponding Author

Abstract


Climate change, driven largely by human activities, leads to long-term shifts in temperature and precipitation. This study aimed to examine trends and spatiotemporal variability in rainfall and temperature in the Jabitehinan District, northwest Ethiopia, and assess their implications for agriculture and resource management. Historical climate data from the six meteorological stations in Ethiopian National Meteorological Agency were analyzed using Sen’s slope estimator, the Mann-Kendall test, and the Precipitation Concentration Index, while spatial variability was assessed using the Inverse Distance Weighted method. Results revealed that mean seasonal rainfall reduction trends were 0.014 mm (spring), 0.005 mm (summer), 0.207 mm (autumn), and 0.057 mm (winter), with an annual average of 0.0122 mm. Temperature trends showed consistent increases: mean seasonal values rose by 0.189°C (winter), 0.215°C (spring), 0.184°C (summer), and 0.042°C (autumn), with an annual average rise of 0.206°C. Decadal trends showed increases in maximum, minimum, and mean temperatures at rates of 0.014°C, 0.029°C, and 0.037°C, respectively. The spatial distribution of rainfall was highest in the upper highlands (1790–1890 mm/year). About 57% of the middle district received 1768–1790 mm, while 20% of the area had 1790–1812 mm, 13% had 1746–1768 mm, and 10% received 1702–1746 mm annually. These findings highlight the substantial impact of climate variability on agricultural productivity, especially for rain-fed farming. They emphasize the need for climate-smart agricultural practices and inform policies aimed at supporting smallholder farmers in similar agro-ecological zones.

Received: 2024-11-29 Revised: 2025-04-04 Accepted: 2025-05-31 Published: 2025-07-31  


Keywords


Invers Distance Weighted; climatic change; agro-ecological zones; and spatial variability

Full Text:

PDF


References

Abegaz, W. B., & Mekoya, A. J. R. (2020). Rainfall variability and trends over Central Ethiopia. Environmental Systems Research, 9(1), 1–13. https://doi.org/10.1186/s40068-020-00175-4

Abtew, W., Melesse, A. M., & Dessalegne, T. (2009). Spatial, inter and intra‐annual variability of the Upper Blue Nile Basin rainfall. Hydrological Processes, 23(21), 3075–3082. https://doi.org/10.1002/hyp.7419

Ademe, D., Zaitchik, B. F., Tesfaye, K., Simane, B., Alemayehu, G., & Adgo, E. (2020). Climate trends and variability at adaptation scale: Patterns and perceptions in an agricultural region of the Ethiopian Highlands. Weather and Climate Extremes, 29, 100263. https://doi.org/10.1016/j.wace.2020.100263

Ahmed, S. I., Rudra, R., Dickinson, T., & Ahmed, M. (2014). Trend and periodicity of temperature time series in Ontario. American Journal of Climate Change, 3(3), 272–288. https://doi.org/10.4236/ajcc.2014.33026

Ahrens, B. (2006). Distance in spatial interpolation of daily rain gauge data. Hydrology and Earth System Sciences, 10(2), 197–208. https://doi.org/10.5194/hess-10-197-2006

Alam, G. M. M., Alam, K., & Mushtaq, S. (2017). Climate change perceptions and local adaptation strategies of hazard-prone rural households in Bangladesh. Climate Risk Management, 17, 52–63. https://doi.org/10.1016/j.crm.2017.06.006

Alemayehu, A., Maru, M., Bewket, W., & Assen, M. (2020). Spatiotemporal variability and trends in rainfall and temperature in Alwero watershed, western Ethiopia. Environmental Systems Research, 9(1), 22. https://doi.org/10.1186/s40068-020-00184-3

Alemayehu, Z. Y., Minale, A. S., & Legesse, S. A. (2022). Spatiotemporal rainfall and temperature variability in Suha watershed, Upper Blue Nile Basin, Northwest Ethiopia. Environmental Monitoring and Assessment, 194(8), 538. https://doi.org/10.1007/s10661-022-10165-x

Alemu, Y. T. (2019). Watershed-based rainfall variability and trends of extreme rainfall events in South East Awash Basin, Ethiopia. International Journal of Social Sciences and Humanities Invention, 6(6), 5524–5530. https://doi.org/10.18535/ijsshi/v6i6.07

Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29–41. https://doi.org/10.1016/j.wace.2017.12.002

Ayalew, D., Tesfaye, K., Mamo, G., Yitaferu, B., & Bayu, W. (2012). Variability of rainfall and its current trend in Amhara region, Ethiopia. African Journal of Agricultural Research, 7(10), 1475–1486. https://doi.org/10.5897/AJAR11.698

Bahiru, W., Wende, E., Mohammed, L., Mohammed, Y., Adem, H., & Demmisie, Y. (2020). Assessing the impact of rainfall variability on teff production and farmers' perception at Gubalafto district, North Eastern, Ethiopia. International Journal of Earth Science and Geophysics, 6(2), Article 042. https://doi.org/10.35840/2631-5033/1842

Bewket, W. (2009). Rainfall variability and crop production in Ethiopia: Case study in the Amhara region. In S. Ege, H. Aspen, B. Teferra, & S. Bekele (Eds.), Proceedings of the 16th International Conference of Ethiopian Studies (Vol. 3, pp. 823–836). Norwegian University of Science and Technology. Retrieved from https://www.researchgate.net/publication/265159708

Bewket, W., & Conway, D. (2007). A note on the temporal and spatial variability of rainfall in the drought-prone Amhara region of Ethiopia. International Journal of Climatology, 27(11), 1467–1477. https://doi.org/10.1002/joc.1481

Blein, R., Bwalya, M., Chimatiro, S., Faivre-Dupaigre, B., Kisira, S., Leturque, H., & Wambo-Yamdjeu, A. (2013). Agriculture in Africa: Transformation and outlook. New Partnership for Africa’s Development (NEPAD). https://www.researchgate.net/publication/265159708

Cetin, M. (2015). Determining the bioclimatic comfort in Kastamonu City. Environmental Monitoring and Assessment, 187(10), 640. https://doi.org/10.1007/s10661-015-4861-3

Chakraborty, S., Pandey, R. P., Chaube, U. C., & Mishra, S. K. (2013). Trend and variability analysis of rainfall series at Seonath River Basin, Chhattisgarh (India). International Journal of Applied Science and Engineering Research, 2(4), 425–434. https://doi.org/10.6088/ijaser.020400005

Chattopadhyay, S., & Edwards, D. R. (2016). Long-term trend analysis of precipitation and air temperature for Kentucky, United States. Climate, 4(1), Article 10. https://doi.org/10.3390/cli4010010

Daninga, P. D., Mlowosa, T., & Zhao, S. (2015). Farmers’ perception and adaptation strategies to climate change indicators in Morogoro. International Journal of Agricultural Sciences and Veterinary Medicine, 3(1), 1–13. https://doi.org/10.6088/ijagvm.2015030101

Degefu, M. A., & Bewket, W. (2014). Variability and trends in rainfall amount and extreme event indices in the Omo-Ghibe River Basin, Ethiopia. Regional Environmental Change, 14(2), 799–810. https://doi.org/10.1007/s10113-013-0538-z

Dinku, T. (2011). Climate risk management and data needs for agriculture in Ethiopia. In Strengthening capacity for climate change adaptation in the agriculture sector in Ethiopia: Proceedings from the national workshop held in Nazareth, Ethiopia, 5–6 July 2010 (pp. 9–14). Food and Agriculture Organization of the United Nations. https://www.fao.org/4/i2155e/i2155e00.pdf

District Agriculture Office. (2020). Annual report for the district agricultural production and other sector implementation. ISSN: 0378-1127. Ethiopian Journal of Agricultural Sciences

Easterling, W. E., Aggarwal, P. K., Batima, P., Brander, K. M., Erda, L., Howden, S. M., Kirilenko, A., Morton, J., Soussana, J.-F., Schmidhuber, J., & Tubiello, F. N. (2007). Food, fibre and forest products. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 273–313). Cambridge University Press.

Enyew, F. B., & Wassie, S. B. (2024). Rainfall trends and spatiotemporal patterns of meteorological drought in Menna watershed, northwestern Ethiopia. Heliyon, 10(6), e27919. https://doi.org/10.1016/j.heliyon.2024.e27919

Esayas, B., Simane, B., Teferi, E., Ongoma, V., & Tefera, N. (2019). Climate variability and farmers’ perception in Southern Ethiopia. Advances in Meteorology, 2019, Article 7341465. https://doi.org/10.1155/2019/7341465

Feke, B. E., Terefe, T., Ture, K., & Hunde, D. (2021). Spatiotemporal variability and time series trends of rainfall over northwestern parts of Ethiopia: The case of Horro Guduru Wollega Zone. Environmental Monitoring and Assessment, 193(6), 367. https://doi.org/10.1007/s10661-021-09141-8

Gautam, R., Hsu, N. C., Lau, K.-M., Tsay, S.-C., & Kafatos, M. (2009). Enhanced pre-monsoon warming over the Himalayan-Gangetic region from 1979 to 2007. Geophysical Research Letters, 36(7), L07704. https://doi.org/10.1029/2009GL037641

Gebreegziabher, Z., Mekonnen, A., Bekele, R. D., Zewdie, S. A., & Kassahun, M. M. (2013). Crop-livestock inter-linkages and climate change implications for Ethiopia’s agriculture: A Ricardian approach. Resources for the Future Discussion Paper Series, EfD DP 13-14. https://www.rff.org/publications/working-papers/crop-livestock-inter-linkages-and-climate-change-implications-for-ethiopias-agriculture-a-ricardian-approach/

Gebrehiwot, T., van der Veen, A., & Maathuis, B. (2011). Spatial and temporal assessment of drought in the Northern highlands of Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 13(3), 309–321. https://doi.org/10.1016/j.jag.2010.12.002

Gissila, T., Black, E., Grimes, D. I. F., & Slingo, J. M. (2004). Seasonal forecasting of the Ethiopian summer rains. International Journal of Climatology, 24(11), 1345–1358. https://doi.org/10.1002/joc.1078

Hare, W. (2003). Assessment of knowledge on impacts of climate change—Contribution to the specification of Article 2 of the UNFCCC: Impacts on ecosystems, food production, water, and socio-economic systems. Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (WBGU). https://www.wbgu.de/wbgu_sn2003_ex01.pdf

Intergovernmental Panel on Climate Change. (2000). Land use, land-use change, and forestry: A special report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/land-use-land-use-change-and-forestry/

Intergovernmental Panel on Climate Change. (2014). Summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-SPM_Approved.pdf

Jain, S. K., & Kumar, V. (2012). Trend analysis of rainfall and temperature data for India. Current Science, 102(1), 37–49.

Jury, M. R., & Funk, C. (2013). Climatic trends over Ethiopia: Regional signals and drivers. International Journal of Climatology, 33(8), 1924–1935. https://doi.org/10.1002/joc.3560

Khatri, B. B., & Pasa, R. B. (2023). People’s perception on climate change: The context of local and global discourse. Asian Journal of Population Sciences, 2(1), 68–79. https://doi.org/10.3126/ajps.v2i1.51091

McSweeney, C., New, M., & Lizcano, G. (2008). UNDP Climate Change Country Profiles: Ethiopia. United Nations Development Programme. https://digital.library.unt.edu/ark:/67531/metadc226682/

Mekonen, A. A., & Berlie, A. B. (2020). Spatiotemporal variability and trends of rainfall and temperature in the Northeastern Highlands of Ethiopia. Modeling Earth Systems and Environment, 6(1), 285–300. https://doi.org/10.1007/s40808-019-00678-9

National Meteorological Services Agency (NMSA). (2007). Climate Change National Adaptation Programme of Action (NAPA) of Ethiopia. NMSA. https://unfccc.int/resource/docs/napa/eth01.pdf

Ndaruzaniye, V. (2011). Water security in Ethiopia: Risks and vulnerabilities assessment. Global Water Institute for Africa Climate Change, Environment and Security. https://gwiwater.org

Philip, S., Kew, S. F., van Oldenborgh, G. J., Otto, F., O’Keefe, S., Haustein, K., King, A., Zegeye, A., Eshetu, Z., Hailemariam, K., Singh, R., Jjemba, E., Funk, C., & Cullen, H. (2018). Attribution analysis of the Ethiopian drought of 2015. Journal of Climate, 31(6), 2465–2486. https://doi.org/10.1175/JCLI-D-17-0274.1

Rawashdeh, S., Thneibat, A. A., Aladwan, Z., Taran, A., & Alrababah, A. (2024). Climate changes on the amount of rain and temperature from 1990–2018 in Madaba, Jordan using geographical information systems. Indonesian Journal of Geography, 56(1), 1–13. https://doi.org/10.22146/ijg.88016

Regassa, S., Givey, C., & Castillo, G. (2010). The rain doesn't come on time anymore: Poverty, vulnerability, and climate variability in Ethiopia. Oxfam International. https://policy-practice.oxfam.org/resources/the-rain-doesnt-come-on-time-anymore-poverty-vulnerability-and-climate-variabil-112339/

Riddle, E. E., & Cook, K. H. (2008). Abrupt rainfall transitions over the Greater Horn of Africa: Observations and regional model simulations. Journal of Geophysical Research: Atmospheres, 113(D15), D15109. https://doi.org/10.1029/2007JD009202

Rosell, S. (2014). Rainfall variability, soils and land use changes in the Ethiopian highlands (Doctoral thesis, University of Gothenburg). Department of Earth Sciences. https://gupea.ub.gu.se/handle/2077/33656

Seleshi, Y., & Zanke, U. (2004). Recent changes in rainfall and rainy days in Ethiopia. International Journal of Climatology, 24(8), 973–983. https://doi.org/10.1002/joc.1052

Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934

Sharma, Y., Sajjad, H., Saha, T. K., Bhuyan, N., Sharma, A., & Ahmed, R. (2024). Analyzing and forecasting climate variability in Nainital district, India using non-parametric methods and ensemble machine learning algorithms. Theoretical and Applied Climatology, 155(6), 4749–4761. https://doi.org/10.1007/s00704-024-04920-

Suryabhagavan, K. V. (2017). GIS-based climate variability and drought characterization in Ethiopia over three decades. Weather and Climate Extremes, 15, 11–23. https://doi.org/10.1016/j.wace.2016.11.005

Tessema, I., & Simane, B. (2019). Vulnerability analysis of smallholder farmers to climate variability and change: An agro-ecological system-based approach in the Fincha’a sub-basin of the upper Blue Nile Basin of Ethiopia. Ecological Processes, 8(1), Article 5. https://doi.org/10.1186/s13717-019-0159-7

Tessema, Y. A., Aweke, C. S., & Endris, G. S. (2013). Understanding the process of adaptation to climate change by small-holder farmers: The case of East Hararghe Zone, Ethiopia. Agricultural and Food Economics, 1(1), Article 13. https://doi.org/10.1186/2193-7532-1-13

Teyso, T., & Anjulo, A. (2016). Spatio-temporal variability and trends of rainfall and temperature over Gamo Gofa Zone, Ethiopia. Journal of Scientific Research and Reports, 12(2), 1–11. https://doi.org/10.9734/JSRR/2016/28667

UNDP. (2007). Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, world population prospects: The 2006 revision and world urbanization prospects, 2005 revision. United Nations. http://esa.un.org/unpp

UNFCCC. (2007). Climate change: Impacts, vulnerabilities and adaptation in the developing countries. UNFCCC Secretariat. https://unfccc.int/resource/docs/publications/impacts.pdf

UNFCCC. (2015). Measurements for estimation of carbon stocks in afforestation and reforestation project activities under the Clean Development Mechanism: A field manual. United Nations Framework Convention on Climate Change. https://unfccc.int/resource/docs/publications/2015_measurements_cdm.pdf

Wagesho, N., Goel, N. K., & Jain, M. K. (2013). Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrological Sciences Journal, 58(2), 354–373. https://doi.org/10.1080/02626667.2012.754543

Wassie, S. B., Mengistu, D. A., & Berlie, A. B. (2022). Trends and spatiotemporal patterns of meteorological drought incidence in North Wollo, northeastern highlands of Ethiopia. Arabian Journal of Geosciences, 15(12), Article 1158. https://doi.org/10.1007/s12517-022-10423-9

Yekoy, Z. (2022). Spatiotemporal rainfall and temperature variability in Suha watershed, Upper Blue Nile Basin, Northwest Ethiopia. Environmental Monitoring and Assessment, 194(8), Article 538. https://doi.org/10.1007/s10661-022-10165-x



DOI: https://doi.org/10.22146/ijg.102013

Article Metrics

Abstract views : 4168 | views : 1298

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Authors and Indonesian Journal of Geography

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

The Indonesian Journal of Geography (ISSN 2354-9114 (online), ISSN 0024-9521 (print))  is an international journal published by the  Faculty of Geography, Universitas Gadjah Mada in collaboration with The Indonesian Geographers Association. The content of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

Web
Analytics IJG STATISTIC