Landsat 8 Observation of the Internal Solitary Waves in the Lombok Strait

https://doi.org/10.22146/ijg.42655

I Wayan Gede Astawa Karang(1*), Chonnaniyah Chonnaniyah(2), Takahiro Osawa(3)

(1) Department of Marine Sciences Faculty of Marine Science and Fisheries Udayana University, Bali, Indonesia and Center for Remote Sensing and Ocean Science (CReSOS), Udayana University, Denpasar, Bali, Indonesia
(2) Center for Remote Sensing and Ocean Science (CReSOS), Udayana University, Denpasar, Bali, Indonesia
(3) Center for Remote Sensing and Ocean Science (CReSOS), Udayana University, Denpasar, Bali, Indonesia and Regional Satellite Applications Center for Disaster Management (RSCD), Japan Aerospace Exploration Agency (JAXA), Ube, Japan and Center for Research and Application of Satellite Remote Sensing (YUCARS), Yamaguchi University, Ube, Japan
(*) Corresponding Author

Abstract


Landsat  8,  Landsat  Data  Continuity  Mission  (LDCM)  satellite,  was  launched  on  11 February 2013 with Operation Land Imager (OLI) sensors. Tis sensor has better radiometric performance than the previous mission, which is quantized in the 12-bit dynamic range due to an increase in the signal-to-noise (SNR) ratio. In this analysis, the spatio-temporal distribution of the propagation of the internal solitary wave (ISW) in the Lombok Strait was extracted from the Landsat 8 images described for the first time.  Tere were 14 ISW events studied for period 2014  -  2015  using  Landsat  8.  Te  manifestations  of  ISW  recorded  on  Landsat  8  images  were then extracted using digitization method to investigate and measure several parameters and ISW distribution in the Lombok Strait. Te estimation results of the average ISW phase velocity in this study are 2.05 ms-1 with the direction of propagation heading north at an average angle of 19.08°. Tis study has shown that Landsat 8 can be used to monitor and analyze several internal wave parameters in the ocean.

Keywords


Internal Solitary Waves; Landsat 8; Lombok Strait

Full Text:

PDF


References

Alpers, W. (1985). Theory of Radar Imaging of Internal Waves. Nature, 314(No. 6008), 245–247.

Alpers, W. (2014). Ocean Internal Waves. In Njoku, E. G. Encyclopedia of Remote Sensing. 433-437. Springer Reference. New York.

Apel, J. R., Byrne, H. M., Proni, J. R., & Charnell, R. L. (1975). Observations of oceanic internal and surface waves from the Earth Resources Technology Satellite. Journal of Geophysical Research, 80(6).

Apel, J. R. (2004). Oceanic Internal Waves and Solitons. In Jackson, C. R. and Apel, R.  Synthetic Aperture Radar Marine User’s Manual. NOAA/ NESDIS, Washington DC., 189–206.

Chander, G., Markham, B.L., Helder, D.L. (2009).  Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ., 113, 893-903

Gao, Q., Dong, D., Yang, X., Husi, L., & Shang, H. (2018). Himawari-8 Geostationary Satellite Observation of The Internal Solitary Waves In The South China Sea. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Vol. XLII, pp. 7–10). Beijing, China.

Jackson, C. (2007). Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research. 112(C11), C11012. https://doi.org/10.1029/2007JC004220.

Karang, I. W. G. A., & Nishio, F. (2011). Internal waves in the Lombok Strait revealed by ALOS PALSAR images. In IEEE Intern Geosci.Remote Sensing Symp. IGARSS 2011 (Vol. 17, pp. 253–256). Vancouver, Canada.

Karang, I. W. G. A., Nishio, F., Mitnik, L., & Osawa, T. (2012). Spatial-Temporal Distribution and Characteristics of Internal Waves in the Lombok Strait Area Studied by Alos-Palsar Images. Earth Science Research, 1(2), 11–22. https://doi.org/10.5539/esr.v1n2p11.

Karang, I. W. G. A., Chonnaniyah & Osawa, T. (2019). Internal solitary wave observations in the Flores Sea using the Himawari-8 geostationary satellite. International Journal of Remote Sensing, DOI: 10.1080/01431161.2019.1693079

Kim, H., Son, B. Y., Jeong, J-Y., and Jo, Y-H. (2018). Comparison of Internal Waves in Various Ocean Fields Around the Korean Peninsula. Journal of Coastal Research: Special Issue 85 - Proceedings of the 15th International Coastal Symposium. 466-470.

Klemas, V. (2012). Remote Sensing of Ocean Internal Waves: An Overview. Journal of Coastal Research, 282(May 2012), 540–546. https://doi.org/10.2112/JCOASTRES-D-11-00156.1.

Lavrova, O. Y., Soloviev, D. M., Strochkov, M. A., Bocharova, T. Y. (2016). River plumes investigation using Sentinel-2A MSI and Landsat-8 OLI data. Proc. SPIE 9999, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2016, 99990G. https://doi.org/10.1117/12.2241312.

Lindsey, D. T., Nam, S. H., & Miller, S. D. (2018). Tracking oceanic nonlinear internal waves in the Indonesian seas from geostationary orbit. Remote Sensing of Environment, 208, 202–209.

Liu, B., Yang, H., Ding, X., & Li, X. (2014). Tracking the internal waves in the South China Sea with environmental satellite sun glint images. Remote Sensing Letters, 5(7), 609–618. https://doi.org/10.1080/2150704X.2014.949365

Matthews, J. P., Aiki, H., Masuda, S., Awaji, T., & Ishikawa, Y. (2011). Monsoon regulation of Lombok Strait internal waves. Journal of Geophysical Research: Oceans, 116(5), 1–14. https://doi.org/10.1029/2010JC006403

Maulana, E., Wulan, T. R., Wahyunungsih, D. S., Ibrahim, F., Putra, A. S., & Putra, M. D. (2017). Geoecology Identification Using Landsat 8 for Spatial Planning in North Sulawesi Coastal. Indonesian Journal of Geography, 49(2), 212–217. https://doi.org/http://dx.doi.org/10.22146/ijg.13189

Mitnik, L., Alpers, W., Hock, L., Branch, F. E., & Road, L. K. (2000). Thermal Plumes and Internal Solitary Waves Generated. In ERS-Envisat Symposium: Looking down to Earth in the New Millenium. Gothenburg, Sweden: European Space Agency, Publication Division, Noordwijk, The Netherlands.

Mitnik, Leonid. (2008). Advanced Land Observing Satellite PALSAR Observations of the Oceanic Dynamic Phenomena in the Coastal Zone. International Geoscience and Remote Sensing Symposium (IGARSS). 2. 351-354. 10.1109/IGARSS.2008.4779000.

Munk, W., Armi, L., Fischer, K., & Zachariasen, F. (2000). Spirals on the sea. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 456(1997), 1217–1280. https://doi.org/10.1098/rspa.2000.0560

Myasoedov, A. (2010). Sunglitter Imagery of the Ocean Surface Phenomena, (48). Retrieved from http://www.nersc.no/sites/www.nersc.no/files/SUNGLITTER IMAGERY OF THE OCEAN SURFACE PHENOMENA.pdf

Ningsih, N. S., Rahmayani, R., Hadi, S., & Brojonegoro, I. S. (2008). Internal Waves Dynamics in the Lombok Strait Studied By a Numerical Model. International Journal Of Remote Sensing And Earth Sciences, 5, 17–33.

Osadchiev, A. A. (2018). Small Mountainous Rivers Generate High-Frequency Internal Waves in Coastal Ocean. Nature Scientific reports. 8:16609. DOI:10.1038/s41598-018-35070-7.

Porter, D. L., & Thompson, D. R. (1999). Continental shelf parameters inferred from SAR internal wave observations. Journal of Atmospheric and Oceanic Technology, 16(4), 475–487.

Sawyer, C. (1983). A Satellite Study of Ocean Internal Waves. Pac. Mar. Environ. Lab., Seattle, Wash. https://doi.org/10.1108/CG-06-2013-0073.

Susanto, R. D., Mitnik, L., & Zheng, Q. (2005). Ocean Internal Waves Observed in the Lombok Strait. Oceanography, 18(4), 80–87.

Zanter, K. (2015). Landsat 8 (L8) Data User Handbook Version 1.0. EROS. South Dakota.



DOI: https://doi.org/10.22146/ijg.42655

Article Metrics

Abstract views : 284 | views : 169

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 I Wayan Gede Astawa Karang, Chonnaniyah -, Takahiro Osawa

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 30/E/KPT/2018, Vol 50 No 1 the Year 2018 - Vol 54 No 2 the Year 2022

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC