The Spatiotemporal Analysis of Dengue Fever in Purwosari District, Gunungkidul Regency, Indonesia
Indra Agus Riyanto(1), Noor Alia Susianti(2), Ratri Abdatush Sholihah(3), Raden Ludhang Pradipta Rizki(4), Ahmad Cahyadi(5*), Muhammad Naufal(6), Fajri Ramadhan(7), Victor Kusuma Ramadan(8), Awanda Sistia Risky(9)
(1) Master Program on Planning and Management of Coastal Area and Watershed Faculty of Geography Universitas Gadjah Mada, Indonesia
(2) Faculty of Medicine Universitas Gadjah Mada Yogyakarta
(3) Master Program of the Department of Computer Science and Information Engineering National Central University Taiwan.
(4) Department of Microbiology Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada Yogyakarta
(5) Department of Environmental Geography Faculty of Geography Universitas Gadjah Mada Yogyakarta.
(6) Department of Environmental Geography Faculty of Geography Universitas Gadjah Mada Yogyakarta
(7) Department of Environmental Geography Faculty of Geography Universitas Gadjah Mada Yogyakarta
(8) Department of Environmental Geography Faculty of Geography Universitas Gadjah Mada Yogyakarta
(9) Department of Environmental Geography Faculty of Geography Universitas Gadjah Mada Yogyakarta
(*) Corresponding Author
Abstract
From 2014 to 2016, the number of prevalence of Dengue Hemorrhagic Fever (DHF) and deaths associated with DHF in Indonesia increased. DHF fatal cases were also reported from three administrative units in the Special Region of Yogyakarta, namely Bantul Regency, Gunungkidul Regency, and Yogyakarta City. Two related deaths in Purwosari, a district in Gunungkidul, raised the status of DHF to an outbreak. This study was designed to characterize the spread pattern of DHF in its endemic areas in Purwosari District using the retrospective method, anamnesis, in-depth interviews, Geographic Information System (GIS), and environmental analysis. The kernel density estimation revealed that in 2011-2017, DHF was concentrated in four villages, namely Giriasih, Giricahyo, Giritirto, and Giripurwo. There was a correlation between DHF incidents and physical geographical features of these villages, including proximity to water sources, high vegetation density, elevation, humidity, and rainfall, which created habitats for mosquito growth. A high incidence of DHF has been observed in children (50.8%) and students (57.4%), with most cases (78.7%) showing typical symptoms of the disease. A few of the 61 cases in the district developed into dengue shock syndrome (DSS) and led to death (4.9%), mainly because the public was unable to recognize the warning signs of DHF early and had limited knowledge of required management therapy. Moreover, the preventive or precautionary measures known as the 3M-Plus were not fully implemented yet.
Keywords
Full Text:
PDFReferences
Al-Ghamdi, K., Khan, M.A., and Mahyoub, J. (2009). Role of Climatic Factors in the Seasonal Abundance of Aedes Aegypti L and Dengue Fever Cases in Jeddah Province of Saudi Arabia. Curr World Environ, 4(2):307-312.
Alshehri, M.S.A. (2013). Dengue fever Outburst and its Relationship with Climatic Factors. World Applied Sciences Journal, 22(4): 506-515.
Aziz, S., Aidil, R.M., Nisfariza, M.N, Ngui, R., Lim, Y.A.L., Wan Yusoff, W.S., and Ruslan, R. (2014). Spatial Density of Aedes Distribution in Urban Areas: A Case Study of Breteau Index in Kuala Lumpur Malaysia. J Vector Borne, 51(2): 91–96.
Badan Pusat Statistik. (2017). Kecamatan Purwosari dalam Angka 2017. Yogyakarta: Badan Pusat Statistik Kabupaten Gunungkidul.
Boyce, C.K., and Lee, J.E. (2017). Plant Evolution and Climate Over Geological Timescales. Annual Review of Earth and Planetary Sciences, 45(1): 61-87.
Brunsch, A., Adji, T.N., Stoffe, D., Ikhwan, M., Oberle, P., and Nestmann, F. (2011). Hydrological Assessment of a Karst Area in Southern Java with Respect to Climate Phenomena. Indonesia: Asian Trans-Disciplinary Karst Conference Yogyakarta-INDONESIA.
Castillo, K.C, Korbl, B., Stewart, A., Gonzalez, J.F, and Ponce, F. (2011). Application of Spatial Analysis to the Examination of Dengue Fever in Guayaquil, Ecuador. Procedia Environmental Sciences, 7: 188–193.
Centers for Disease Control and Prevention. (1998). Guidelines for treatment of sexually transmitted diseases. CDC, 1:47.
Chanprasopchai, P., Pongsumpun, P., and Tang, I.M. (2017). Effect of rainfall for the dynamical transmission model of the dengue disease in Thailand. Hindawi: 1-17.
Cheong, Y.L, Leitao, P.J, and Lakes, T. (2014). Assessment of Land Use Factors Associated with Dengue Cases in Malaysia Using Boosted Regression Trees. Spatial and Spatio-temporal Epidemiology, 10: 75–84.
Chu, H., Chan, T., and Jao, F. (2013). GIS-Aided Planning of Insecticide Spraying to Control Dengue Transmission. International Journal of Health Geographics, 12(1):1-9.
Coleman, M., Coleman, M., Mabuza, A.M., Kok, G., Coetzee, M., and Durrheim, D.N. (2009). Using the SaTScan Method to Detect Local Malaria Clusters for Guiding Malaria Control Programmes. Malaria Journal, 8(68) : 1-6.
Davies, T.M., Hazelton, M.L., and Marshall, J. (2011). Sparr: Analyzing Spatial Relative Risk Using Fixed and Adaptive Kernel Density Estimation in R. Journal of Statistical Software, 39(1):1-14.
Departemen Kesehatan RI. (2018). Data dan Informasi Profil Kesehatan Indonesia. Jakarta: Kementrian Kesehatan Republik Indonesia.
Dinas Kesehatan Pemerintah Kota Yogyakarta. (2015). Profil Kesehatan Tahun 2015 Kota Yogyakarta. Yogyakarta: Dinas Kesehatan Pemerintah Kota Yogyakarta.
Dinas Kesehatan Provinsi D.I Yogyakarta. (2012). Profil Kesehatan Provinsi D.I. Yogyakarta. Yogyakarta: Dinas Kesehatan
Provinsi D.I Yogyakarta.
Dom, N.C, Madzlan, M., Hasnan, S.N.A, and Misran, N. (2016). Water Quality Characteristics of Dengue Vectors Breeding Containers. International Journal of Mosquito Research, 3(1): 25-29.
Duncombe, J., Clements, A., Hu, W., Weinstein, P., Ritchie, S., and Espino, F.E. (2012). Review: Geographical Information Systems for Dengue Surveillance. American Journal of Tropical Medicine, 86(5): 753-755.
Edirisinghe, G. (2017). Contribution of Rainfall Patterns for Increased Dengue Epidemic in Sri Lanka. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 35(1): 284-294.
Ehelepola, N.D.B, Ariyaratne, K., Buddhadasa, W.M.N.P., Ratnayake, S., and Wickramasinghe, M. (2015). A study of The Correlation Between Dengue and Weather in Kandy City, Sri Lanka (2003 -2012) and Lessons Learned. Infectious Diseases of Poverty, 4(1): 1-14.
Gama, Z.P, Nakagoshi, N., and Islamiyah, M. (2013). Distribution Patterns and Relationship Between Elevation and the Abundance of Aedes Aegypti in Mojokerto City 2012. Open Journal of Animal Sciences, 3(4A): 11-16.
Gomes, A.F, Nobre, A.A., and Cruz, O.G. (2012). Temporal Analysis of the Relationship Between Dengue and Meteorological Variables in The City of Rio De Janeiro, Brazil, 2001-2009. Cad Saúde Pública, 28(11): 2189-2197.
Gu, H., Leung, R.K., Jing, Q., Zhang, W., Yang, Z., Lu, J., Hao, Y., and Zhang, D. (2016). Meteorological Factors for Dengue Fever Control and Prevention in South China. Int. J. Environ. Res. Public Health, 13(9): 867.
Haryono, E and Day, M. (2004). Landform Differentiation Within the Gunungkidul Kegelkarst, Java, Indonesia. Journal of Cave and Karst Studies, 66(2): 62-69.
Haryono, E and Suratman. (2010). Significant Features of Gununngsewu Karst as Geopark Site. 4th International UNESCO Conference on Geopark Langkawi April 12-15.
HonÓrio, N.A., Silva, W.D.C., Leite, P.J., Gonçalves, J.M., Lounibos, L.P., and Oliveira, R.L.D. (2013). Dispersal of Aedes Aegypti and Aedes Albopictus (Diptera: Culicidae) in an Urban Endemic Dengue Area in The State of Rio De Janeiro, Brazil. Mem Inst Oswaldo Cruz, 98(2): 191-198.
Hugget, R.J. (2011). Fundamentals of Geomorphology 3rd Edition. The United Kingdom: Routledge Taylor and Francis Group.
Jemal, Y and Al-Thukair, A.A. (2018). Combining GIS Application and Climatic Factors for Mosquito Control in Eastern Province, Saudi Arabia. Saudi Journal of Biological Sciences, 25(8): 1593-1602.
Kementerian Kesehatan Repbulik Indonesia. (2016). Situasi Penyakit Demam Berdarah di Indonesia Tahun 2016. Jakarta: Kementerian Kesehatan RI.
Lozano-Fuentes, S., Hayden, M.H., Welsh-Rodriguez, C., Ochoa-Martinez, C., Tapia-Santos, B., Konylinski, K.C., Uejio, K.U., Zielinski-Gutierrez, E., Monache, L.D., Monaghan, A.J, Steinhoff, D.F, and Eisen, L. (2012). The Dengue Virus Mosquito Vector Aedes Aegypti at High Elevation in Mexico. Am J Trop Med Hyg, 87(5): 902–909.
Moreno-Madrinan, M.J., Crosson, W.L., Eisen, L., Estes, S.M., Ester, Jr., Maurice, G., Hayden, M., Hemmings, S.N., Irwin, D.E., Lozano-Fuentes, S., Monaghan, A.J., Quattrochi, D., Welsh-Rodriguez, C.M., and Zielinski-Gutierrez, E. (2014). Correlating Remote Sensing Data with the Abundance of Pupae of The Dengue Virus Mosquito Vector, Aedes Aegypti, in Central Mexico. ISPRS Int. J. Geo-Inf, 3(2): 732-749.
Ohmer, M., Liesch, T., Geoppert, N., and Goldscheider, N. (2017). On the Optimal Selection of Interpolation Methods for Groundwater Contouring: An Example of Propagation of Uncertainty Regarding Inter-Aquifer Exchange. Advance in Water Resources, 109: 121-132.
Panthwer, M.A., Pirzada, N., Abro, A., and Khahro, S.H. (2017). Spatial Risk Mapping for Dengue Fever Using GIS: A Case Study of Hyderabad. Sindh University Research Journal, 49(1): 43-36.,
Paul, B and Tham, W.L. (2015). Interrelation Between Climate and Dengue in Malaysia. Health, 6(7): 672-678.
Rejeki, D.S.R., Fuad, A., Widartono, B.S., Murgabdarwati, E.E.H., and Kusnanto, H. (2019). Spatiotemporal Patterns of Malaria at Cross-Boundaries Area in Menoreh Hills, Java, Indonesia. Malar J, 18(80) :2-12.
Ruzman, N.S.L.N and Rahman, H.A. (2017). The Association Between Climatic Factors and Dengue Fever: A Study in Subang Jaya and Sepang Selangor. Malaysian journal of public health medicine, Special Volume (1): 140-150.
Sarfraz, M.S., Tripathi, N.K., Tipdecho, T., Thongbu, T., Kerdthong, P., and Souris, M. (2012). Analyzing the Spatio-Temporal Relationship Between Dengue Vector Larval Density and Land-use Using Factor Analysis and Spatial Ring Mapping. BMC Public Health, 12(853): 1-19.
Shi, X., Miller, S., Mwenda, K., Onda, A., Rees, J., Onega, T., Gui, J., Karagas, M., Demidenko, E., and Moeschler, J. (2013). Mapping Disease at an Approximated Individual Level Using Aggregate Data: A Case Study of Mapping New Hampshire Birth Defects. Int. J. Environ. Res. Public Health, 10(9): 4161-4174.
Soegijanto S. (2004). Demam Berdarah Dengue. Surabaya: Airlangga University Press.
Sur, S., Soreghan, G.S, Yang, W., and Saller, A.H. (2010). A Record of Glacial and Milankovitch-Scale Fluctuations in Atmospheric Dust from The Pennsylvanian Tropic. Journal of Sedimentary Research, 80(12): 1046-1067.
Sutaryo. (1991). Limfosit Plasma Biru Arti Diagnostik dan Sifat Imunologik pada Infeksi Dengue. Yogyakarta: Fakultas Kedokteran Universitas Gadjah Mada.
Tiong, V., Abd-Jamil, J., Zan, M.H.A., Abu-Bakar, R.S., Ew, C.L., Jafar, F.L., Nellis, S., Fauzi, R., and Abu-Bakar, S. (2015). Evaluation of Land Cover and Prevalence of Dengue in Malaysia. Tropical Biomedicine, 32(4): 587–597.
Tsuda, Y., Takagi, M., Wang, S., Wang, Z., and Tang, L. (2001). Movement of Aedes Aegypti (Diptera: Culicidae) Released in a Small Isolated Village on Hainan Island, China. Journal of Medical Entomology, 38(1):93-98.
DOI: https://doi.org/10.22146/ijg.49366
Article Metrics
Abstract views : 4394 | views : 3254Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Indra Agus Riyanto
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)
ISSN 2354-9114 (online), ISSN 0024-9521 (print)
IJG STATISTIC