3D Modeling of Subsurface Lawanopo Fault In Southeast Sulawesi, Indonesia Using Grablox and its Consequence to Geohazard

https://doi.org/10.22146/ijg.50878

Triani Triani(1), Rofiqul Umam(2), Sismanto Sismanto(3*)

(1) Study Program of Physics, University of Sembilanbelas November Kolaka, Indonesia and Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
(2) School of Science and Technology, Kwansei Gakuin University, Sanda, Japan and Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Lawanopo Fault is a horizontal shear fault (sinistral strike-slip) found in Southeast Sulawesi province and is thought to be active during Plio-Pleistocene or mid-late Miocene to the present. This study has been carried out which aims to find out the geometric shapes below the surface of the Lawanopo fault using complete Bouguer anomaly (ABL) data.  The ABL data is projected onto a flat plane using the Dampney method at an altitude of 8 km, and the separation of local and regional anomalies is carried out using the upward continuation method at an altitude of 60 km. Three-dimensional (3D) modeling under the surface of the Lawanopo fault is done using the computer program Grablox. Data processing techniques using Singular Value Decomposition (SVD) and Occam inversion. The results showed that a high gravity anomaly of 190-225 mGal was caused by an igneous rock below the surface with a density of 2.7-3.33 gr/cm3 and a thickness of about 13 km, a moderate anomaly of 175-187 mGal caused by Paleozoic igneous rocks aged Carbon with a density of 2.6-2.9 gr/cm3 and a thickness of about 25 km. Low anomaly 115-160 mGal is caused by rocks with a density of 2.0-2.5 gr/cm3 and a thickness of about 22-23 km. The Lawanopo fault constituent rocks consist of alkaline rocks in the basement covered by sediment and metamorphic with a depth of Lawanopo fault more than 15 km and begin to be seen at a depth of 4.3 km of the surface. it is known that the area around the Lawanopo fault is an area prone to earthquakes. But, based on the soil and rock structure around the Lawanopo fault, the compactness and attenuation levels in reducing earthquake waves are quite good, so that land use around the Lawanopo fault tends to be safe.

Keywords


3D Modeling; Gravity Data; Complete Bouguer Anomaly; Grablox

Full Text:

PDF


References

Arunee K, Rofiqul U, and Kittisak J.(2019). Environmental Sustainability and its Growth in Malaysia by Elaborating the Green Economy and Environmental Efficiency; International Journal of Energy Economics and Policy, 9(5), 465-473.

Boen T. (2008). Indonesian earthquake problem; International Conference on Earthquake Engineering and Disaster Mitigation, (November), 1–6.

Burhan. (2012). Pemodelan Struktur Bawah Permukaan Sistem Palu-Koro-Lawanopo-Matano Berdasarkan Analisa Gradien Vertikal Data Anomali Gravitasi Regional; Jurnal Aplikasi Fisika, 8(2), 4.

Dampney, C.N.G. (1969). The Equivalent Source Technique; Geophysics vol. 34(1), 35-39

Farid M, Sunarto and Suryanto W. (2016). Mapping of potential areas tsunami-prone in Bengkulu city; ARPN Journal of Engineering and Applied Sciences, 11(7), 4828–4832. https://doi.org/10.1016/j.tetlet.2008.07.034

Gou J, Zhou W and Wu L (2016). Implicit Three-Dimensional Geo-Modelling Based On Hrbf Surface; The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII(October), 20–21. https://doi.org/10.5194/isprs-archives-XLII-2-W2-63-2016

Hall R and Wilson M. (2000). Neogene sutures in eastern Indonesia; Journal ofAsian Earth Sciences. University of London.

Hartantyo, E., Brotopuspito, K.S., Sismanto,, Waluyo,. (2014). Comparison of 8 and 24 channels MASW data: Field performance. International Conference on Physics, ICP 2014, pp. 97–99.

Hartantyo, E., Brotopuspito, K.S., Sismanto,, Waluyo,. (2015). Predicting the liquefaction phenomena from shear velocity profiling: Empirical approach to 6.3 Mw, May 2006 Yogyakarta earthquake. AIP Conference Proceedings, 1658, 030017.

Holloway, J.D., and R. Hall. (1998). SE Asian geology and biogeography: an introduction. In: R. Hall and J.D. Holloway (eds.) Biogeography and geological evolution of SE Asia, Backhuys Publishers, Leiden, p. 1-23.

Irawan, S., Sismanto,, and Sukmatiawan, A. (2014). Applying the horizon based tomography method to update interval velocity model, identify the structure of pre-stack depth migration 3D and estimate the hydrocarbon reserve in SBI field of North West Java Basin. Jurnal Teknologi (Sciences and Engineering), 69(6), pp. 53–58.

Irsyam M, Sengara W, Aldiamar F, Widiyantoro S, Triyoso W, Hilman D, Kertapati E, Meilano I, Suhardjono, Asrurifak M and Ridwan M. (2010). Ringkasan Hasil Studi Tim Revisi Peta Gempa Indonesia; Tim Revisi Peta Gempa Indonesia. Bandung.

Koesnama. (2014). Pensesaran Mendatar dan Zona Tunjaman Aktif di Sulawesi Hubungannya dengan Kegempaan, JGSM vol 15 No 2 Mei 2014; Pusat Survei Geologi Bandung

Masri, Firdaus and Deniyatno.(2010). Pemetaan Tingkat Ancaman Bencana Gempa Bumi di Kecamatan Kolaka, Kabupaten Kolaka, Sulawesi Tenggara; Jurnal Aplikasi Fisika, 7(2).

Natawidjaja D H, and Daryono M. (2016). The Lawanopo Fault, central Sulawesi, East Indonesia; 4th International Symposium on Earthquake and Disaster Mitigation 2014 (ISEDM 2014), (4). https://doi.org/10.1063/1.4915009

Nurpratama M I, and Darusman C A. (2015). Subsurface Structural Mapping Using 2D MT and Gravity Data of Dieng Geothermal Field, Indonesia; Proceedings World Geothermal Congress 2015, (April), 1–5.

Pirttijavi M. (2008). User’s Guide to Version Grablox 1,6b: Gravity Interpretation and Modelling Software based on a 3-D Block Model; Department of Physics Universitas of Oulu Finland.

Pirttijavi M. (2012). User’s Guide to Version Bloxer 1,6c Interactive Visualization and Editing Software for 3D Models. University of Oulu Finland.

Putra R R. Kiyono J, Ono Y and Parajuli H R. (2012). Seismic Hazard Analysis for Indonesia;.Journal of Natural Disaster Science, 33(2), 59–70. https://doi.org/10.2328/jnds.33.59

Rizqi P, Syamsul H, Rofiqul U, Kittisak J, Andika E P, Hasan S T, and Muhamad S. (2019). The Effectiveness Of Environmental Geophysical Learning In Developing Academic Achievement And Conceptual Understanding Of Electrodynamics: Applications Geoelectric Using Cooperative Learning Model; Jurnal Ilmiah Pendidikan Fisika Al-BiRuNi, 08 (2).

Rusydi M, Efendi R, Sandra, and Rahmawati. (2018). Earthquake Hazard Analysis Use Vs30 Data in Palu; Journal of Physics: Conference Series, 979(1). https://doi.org/10.1088/1742-6596/979/1/012054

Saibi H, Nishijima J, and Ehara S. (2006). Processing and Interpretation of Gravity Data for the Shimabara Peninsula Area, Southwestern Japan; Memoirs of the Faculty of Engineering, Kyushu University, 66(2).

Sudarmaji., Sismanto., Waluyo., and Soedijono, B. (2016). Numerical modeling of 2D seismic wave propagation in fluid saturated porous media using graphics processing unit (GPU): Study case of realistic simple structural hydrocarbon trap. AIP Conference Proceedings, 1755, 100001

Valkaniotis S, Ganas A, Tsironi V and Barberopoulou A. (2018). A preliminary report on the M7.5 Palu earthquake co-seismic ruptures and landslides using image correlation techniques on optical satellite data, 1–15.

Van Gorsel J. (2013). Bibliography of The Geology of Indonesia and Surrounding Areas chapter V Sulawesi 5th Edition.Retrieved from www. Vangorselslist.com

Zufialdi, Zakaria and Sidarto. (2018). Aktifitas Tektonik di Sulawesi dan Sekitarnya Sejak Mesozoikum Hingga Kini Sebagai Akibat Interaksi Aktifitas Tektonik Lempeng Tektonik Utama di Sekitarnya; Journal Fo Geo-Science, 16(3), 115–127.

Zuhdi, M., Sismanto., Setiawan, A., Setyowiyoto, J., Susilo, A., and Sarkowi, M. (2018). Radial derivative and radial inversion for interpreting 4D gravity anomaly due to fluids injection around reservoir. Telkomnika (Telecommunication Computing Electronics and Control), 2018, 16(6), pp. 2855–2863



DOI: https://doi.org/10.22146/ijg.50878

Article Metrics

Abstract views : 3056 | views : 1917

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Triani Triani, Rofiqul Umam, Rahmad Junaidi, Sismanto Sismanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC