Sea Surface Temperature (SST) and Rainfall Trends in the Singapore Strait from 2002 to 2019

https://doi.org/10.22146/ijg.68738

Mubarak Mubarak(1*), Rifardi Rifardi(2), Ahmad Nurhuda(3), Romi Fadli Syahputra(4), Sri Fitria Retnawaty(5)

(1) Department of Marine Sciences, Faculty of Fisheries Marine Sciences, Universitas Riau-Indonesia
(2) Department of Marine Sciences, Faculty of Fisheries Marine Sciences, Universitas Riau-Indonesia
(3) Department of Marine Sciences, Faculty of Fisheries Marine Sciences, Universitas Riau-Indonesia
(4) Department of Physics, Faculty of Mathematics, Natural Sciences and Health Sciences, Universitas Muhammadiyah Riau-Indonesia
(5) Department of Physics, Faculty of Mathematics, Natural Sciences and Health Sciences, Universitas Muhammadiyah Riau-Indonesia
(*) Corresponding Author

Abstract


Studying Singapore Strait waters condition as a form of maritime mitigation is necessary because it is an international shipping lane. The dominant weather changes include rainfall, wind flows, and sea surface temperature (SST). This study aims to reveal the relationship between rainfall and SST activity in the Singapore Strait for over 18 years, from 2002 to 2019. The results showed a negative correlation, where the SST decreases as rainfall increases and vice versa. In addition, the high rainfall and low SST distribution occur in the Western season (December–February). The low rainfall intensity and high (warm) SST distribution occur yearly in the transition from West to East (March–August). Also, the distribution pattern is influenced by rainfall intensity and the water mass from the South China Sea and the Malacca Strait, where the strait is a mixture of these masses. The neural network model confirmed the negative correlation. Hence a small change in SST causes rainfall if it is cooler, and less precipitation if warmer.


Keywords


Singapore Strait; Sea surface temperature; Rainfall

Full Text:

PDF


References

Alhamshry, A., Fenta, A. A., Yasuda, H., Kimura, R., & Shimizu, K. (2019). Seasonal Rainfall Variability in Ethiopia and Its Long-Term Link to Global Sea Surface Temperatures. Water, 12(1), 55. https://doi.org/10.3390/w12010055

Antoni, S., Bantan, R. A., Al-Dubai, T. A., Lubis, M. Z., Anurogo, W., & Silaban, R. D. (2019). Chlorophyll-a, and Sea Surface Temperature (SST) as proxies for Climate Changes: Case Study in Batu Ampar waters, Riau Islands. IOP Conference Series: Earth and Environmental Science, 273(1), 012012. https://doi.org/10.1088/1755-1315/273/1/012012

Chaidez, V., Dreano, D., Agusti, S., Duarte, C. M., & Hoteit, I. (2017). Decadal trends in Red Sea maximum surface temperature. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-08146-z

Ciani, D., Rio, M. H., Nardelli, B. B., Etienne, H., & Santoleri, R. (2020). Improving the Altimeter-Derived Surface Currents Using Sea Surface Temperature (SST) Data: A Sensitivity Study to SST Products. Remote Sensing, 12(10), 1601. https://doi.org/10.3390/rs12101601

Corpus, L. (2014). Reconstructing Singapore’s marine fisheries catch, 1950-2010. In K. Zylich, D. Zeller, M. Ang, & D. Pauly (Eds.), Fisheries catch reconstructions: Islands, Part IV, Fisheries Centre Research Reports, (22(2), pp. 137-146). Vancouver, Canada: University of British Columbia.

Dewi, Y. W., Wirasatriya, A., Sugianto, D. N., Helmi, M., Marwoto, J., & Maslukah, L. (2020). Effect of ENSO and IOD on the Variability of Sea Surface Temperature (SST) in Java Sea. IOP Conference Series: Earth and Environmental Science, 530(1), 012007. https://doi.org/10.1088/1755-1315/530/1/012007

Endo, H., & Kitoh, A. (2014). Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophysical Research Letters, 41(5), 1704–1711. https://doi.org/10.1002/2013gl059158

Evans, M. N., Kaplan, A., & Cane, M. A. (2000). Intercomparison of coral oxygen isotope data and historical sea surface temperature (SST): Potential for coral-based SST field reconstructions. Paleoceanography, 15(5), 551–563. https://doi.org/10.1029/2000pa000498

Fu, A., Patil, K. R., & Iiyama, M. (2020). Region Proposal and Regression Network for Fishing Spots Detection from Sea Temperature. Global Oceans 2020: Singapore – U.S. Gulf Coast. https://doi.org/10.1109/ieeeconf38699.2020.9389050

Gnanaseelan, C., Deshpande, A., & McPhaden, M. J. (2012). Impact of Indian Ocean Dipole and El Niño/Southern Oscillation wind-forcing on the Wyrtki jets. Journal of Geophysical Research: Oceans, 117(C8), n/a. https://doi.org/10.1029/2012jc007918

Hendrawan, I. G., Asai, K., Triwahyuni, A., & Lestari, D. V. (2019). The interanual rainfall variability in Indonesia corresponding to El Niño Southern Oscillation and Indian Ocean Dipole. Acta Oceanologica Sinica, 38(7), 57–66. https://doi.org/10.1007/s13131-019-1457-1

Isa, N. S., Akhir, M. F., Kok, P. H., Daud, N. R., Khalil, I., & Roseli, N. H. (2020). Spatial and temporal variability of sea surface temperature during El-Niño Southern Oscillation and Indian Ocean Dipole in the Strait of Malacca and Andaman Sea. Regional Studies in Marine Science, 39, 101402. https://doi.org/10.1016/j.rsma.2020.101402

Jena, P., Kasiviswanathan, K. S., & Azad, S. (2020). Spatiotemporal characteristics of extreme droughts and their association with sea surface temperature over the Cauvery River basin, India. Natural Hazards, 104(3), 2239–2259. https://doi.org/10.1007/s11069-020-04270-8

Kiyofuji, H., Aoki, Y., Kinoshita, J., Okamoto, S., Masujima, M., Matsumoto, T., Fujioka, K., Ogata, R., Nakao, T., Sugimoto, N., & Kitagawa, T. (2019). Northward migration dynamics of skipjack tuna (Katsuwonus pelamis) associated with the lower thermal limit in the western Pacific Ocean. Progress in Oceanography, 175, 55–67. https://doi.org/10.1016/j.pocean.2019.03.006

Kristensen, M., Righton, D., del Villar-Guerra, D., Baktoft, H., & Aarestrup, K. (2018). Temperature and depth preferences of adult sea trout Salmo trutta during the marine migration phase. Marine Ecology Progress Series, 599, 209–224. https://doi.org/10.3354/meps12618

Li, J., Li, X., Li, X., Chen, L., & Jin, L. (2019). Observed Multi-Timescale Differences between Summertime Near-Surface Equivalent Temperature and Temperature for China and Their Linkage with Global Sea Surface Temperatures. Atmosphere, 10(8), 447. https://doi.org/10.3390/atmos10080447

Luo, B., Minnett, P. J., Gentemann, C., & Szczodrak, G. (2019). Improving satellite retrieved night-time infrared sea surface temperatures in aerosol contaminated regions. Remote Sensing of Environment, 223, 8–20. https://doi.org/10.1016/j.rse.2019.01.009

Maruyama, F., Kai, K., & Morimoto, H. (2011). Wavelet-Based Multifractal Analysis of the El Nino/Southern Oscillation, the Indian Ocean Dipole and the North Atlantic Oscillation. SOLA, 7, 65–68. https://doi.org/10.2151/sola.2011-017

Merchant, C. J., Embury, O., Bulgin, C. E., Block, T., Corlett, G. K., Fiedler, E., Good, S. A., Mittaz, J., Rayner, N. A., Berry, D., Eastwood, S., Taylor, M., Tsushima, Y., Waterfall, A., Wilson, R., & Donlon, C. (2019). Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Scientific Data, 6(1). https://doi.org/10.1038/s41597-019-0236-x

Mubarak, M., & Nurhuda, A. (2021). Sediment Movements in Estuary of Siak River, Riau Basin, Indonesia. Indonesian Journal of Geography, 53(1). https://doi.org/10.22146/ijg.57100

Mubarak, Sulaiman, A., & Efriyeldi. (2017). Environmental Effect of Tidal Bore Propagation in Kampar River. MATEC Web of Conferences, 103, 04015. https://doi.org/10.1051/matecconf/201710304015

Nababan, B., Rosyadi, N., Manurung, D., Natih, N. M., & Hakim, R. (2016). The Seasonal Variability of Sea Surface Temperature and Chlorophyll-a Concentration in the South of Makassar Strait. Procedia Environmental Sciences, 33, 583–599. https://doi.org/10.1016/j.proenv.2016.03.112

Nurhuda, A., Mubarak, M., & Sutikno, S. (2019). Analysis of coastal vulnerability of Rangsang Island due to climate changes. Journal of Degraded and Mining Lands Management, 6(4), 1907–1914. https://doi.org/10.15243/jdmlm.2019.064.1907

Pastor, F., Valiente, J. A., & Palau, J. L. (2017). Sea Surface Temperature in the Mediterranean: Trends and Spatial Patterns (1982–2016). Pure and Applied Geophysics, 175(11), 4017–4029. https://doi.org/10.1007/s00024-017-1739-z

Pramuwardani, I., Hartono, Sunarto, & Sopaheluwakan, A. (2018). Indonesian rainfall variability during Western North Pacific and Australian monsoon phase related to convectively coupled equatorial waves. Arabian Journal of Geosciences, 11(21). https://doi.org/10.1007/s12517-018-4003-7

Ray, R. D., & Susanto, R. D. (2016). Tidal mixing signatures in the Indonesian seas from high-resolution sea surface temperature data. Geophysical Research Letters, 43(15), 8115–8123. https://doi.org/10.1002/2016gl069485

Shaltout, M. (2019). Recent sea surface temperature trends and future scenarios for the Red Sea. Oceanologia, 61(4), 484–504. https://doi.org/10.1016/j.oceano.2019.05.002

Sherwen, T., Chance, R. J., Tinel, L., Ellis, D., Evans, M. J., & Carpenter, L. J. (2019). A machine-learning-based global sea-surface iodide distribution. Earth System Science Data, 11(3), 1239–1262. https://doi.org/10.5194/essd-11-1239-2019

Soeriaatmadja, R. E. (2008). Surface Salinities in the Strait of Malacca. Marine Research in Indonesia, 2, 27–55. https://doi.org/10.14203/mri.v2i0.326

Song, D., Bao, X., Wang, X. H., & Wu, W. (2009). The optimization algorithm for the pathfinder sea surface temperature in the East China Seas. Ocean Science Journal, 44(1), 11–19. https://doi.org/10.1007/s12601-009-0002-7

Sukresno, B., Jatisworo, D., & Hanintyo, R. (2021). Validation of Sea Surface Temperature from GCOM-C Satellite Using iQuam Datasets and MUR-SST in Indonesian Waters. Indonesian Journal of Geography, 53(1). https://doi.org/10.22146/ijg.53790

Sun, Y., Eltahir, E., & Malanotte-Rizzoli, P. (2017). The bottom water exchange between the Singapore Strait and the West Johor Strait. Continental Shelf Research, 145, 32–42. https://doi.org/10.1016/j.csr.2017.07.004

Sundarambal, P., Balasubramanian, R., & Tkalich, P. (2009). Atmospheric fluxes of nutrients onto Singapore Strait. Water Science and Technology, 59(11), 2287–2295. https://doi.org/10.2166/wst.2009.262

Terray, P., & Dominiak, S. (2005). Indian Ocean Sea Surface Temperature and El Niño–Southern Oscillation: A New Perspective. Journal of Climate, 18(9), 1351–1368. https://doi.org/10.1175/jcli3338.1

Thiébaux, J., Rogers, E., Wang, W., & Katz, B. (2003). A New High-Resolution Blended Real-Time Global Sea Surface Temperature Analysis. Bulletin of the American Meteorological Society, 84(5), 645–656. https://doi.org/10.1175/bams-84-5-645

Thirumalai, K., DiNezio, P. N., Okumura, Y., & Deser, C. (2017). Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nature Communications, 8(1). https://doi.org/10.1038/ncomms15531

Tuchen, F. P., Lübbecke, J. F., Brandt, P., & Fu, Y. (2020). Observed Transport Variability of the Atlantic Subtropical Cells and Their Connection to Tropical Sea Surface Temperature Variability. Journal of Geophysical Research: Oceans, 125(12). https://doi.org/10.1029/2020jc016592

Wisetya Dewi, Y., Wirasatriya, A., Nugroho Sugianto, D., Helmi, M., Marwoto, J., & Maslukah, L. (2020). Effect of ENSO and IOD on the Variability of Sea Surface Temperature (SST) in Java Sea. IOP Conference Series: Earth and Environmental Science, 530(1), 012007. https://doi.org/10.1088/1755-1315/530/1/012007

Xu, F., Du, Y. A., Chen, H., & Zhu, J. M. (2021). Prediction of Fish Migration Caused by Ocean Warming Based on SARIMA Model. Complexity, 2021, 1–9. https://doi.org/10.1155/2021/5553935



DOI: https://doi.org/10.22146/ijg.68738

Article Metrics

Abstract views : 768 | views : 329

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Mubarak Mubarak, Rifardi Rifardi, Musrifin Galib, Ahmad Nurhuda, Sri Fitria Retnowaty

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 30/E/KPT/2018, Vol 50 No 1 the Year 2018 - Vol 54 No 2 the Year 2022

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC