First-order analyses on the role of surface wind in the long-term contraction of the Indo-Pacific warm pool

https://doi.org/10.22146/ijg.75502

Andreas Siswandi(1*), Yudha Setiawan Djamil(2), Rima Rachmayani(3), Sri Yudawati Cahyarini(4), Marfasran Hendrizan(5)

(1) Bandung Institute of Technology
(2) Research Center for Climate and Atmosphere, National Research and Innovation Agency (BRIN)
(3) Bandung Institute of Technology
(4) Research Center for Climate and Atmosphere, National Research and Innovation Agency (BRIN)
(5) Research Center for Climate and Atmosphere, National Research and Innovation Agency (BRIN)
(*) Corresponding Author

Abstract


Due to its high evaporation rate, the Indo-Pacific Warm Pool (IPWP) is one of the most important drivers of Indonesian weather and climate. Previous studies, based on the Sea Surface Temperature (SST) proxy records, suggest that IPWP in the mid-Holocene era (~6000 years ago) underwent a contraction (colder on its east-west perimeter and warmer on its center) compared to today’s condition. In this research, the role of surface wind in contracting the IPWP was analyzed by checking the coherency between changes in SST, wind-stress magnitude, and evaporation. The Climate Community System Model version 4 (CCSM4) simulated these three physical quantities under the pre-Industrial and mid-Holocene scenarios. In these simulations, an anti-phase relation between SST and wind-stress magnitude indicates an important role for a weaker surface wind in warming the SST in the center of the IPWP (South China Sea and Banda Sea), mainly during boreal autumn. However, a weaker surface wind did not seem to have simultaneously suppressed ocean evaporation to warm the SST, as shown by the phase-lag relation in their monthly climatology. On the other hand, colder SSTs on the east-west perimeter of the IPWP (western coast of Sumatra and northern coast of Papua) are unlikely to be associated with changes in the surface wind following a weak correlation between their SST and wind-stress magnitude  


Keywords


Indo-Pacific Warm Pool (IPWP), mid-Holocene, CCSM4, Sea-Air Interaction

Full Text:

PDF


References

Abram, N. J., McGregor, H. v., Gagan, M. K., Hantoro, W. S., & Suwargadi, B. W. (2009). Oscillations in the southern extent of the Indo-Pacific Warm-pool during the mid-Holocene. Quaternary Science Reviews, 28(25–26), 2794–2803.

Ahrens, C. D. (2008). Essentials of Meteorology: An Invitation to the Atmosphere. Thomson Brooks/Cole.

Bao, J. W., Fairall, C. W., Michelson, S. A., & Bianco, L. (2011). Parameterizations of sea-spray impact on the air-sea momentum and heat fluxes. Monthly Weather Review, 139(12), 3781–3797. https://doi.org/10.1175/MWR-D-11-00007.1

Bartlett, M. S. (1948). Smoothing Periodograms from Time-Series with Continuous Spectra. Nature, 161(4096), 686–687.

Cane, M., & Clement, A. C. (1999). A role for the tropical pacific coupled ocean-atmosphere system on milankovitch and millennial timescales. Part II: Global impacts. In Geophysical Monograph Series (Vol. 112, pp. 373–383). Blackwell Publishing Ltd.

Chelton, D.B., Schlax, M.G., Freilich, M.H., Milliff, R.F., (2004). Satellite measurements reveal persistent small-scale features in ocean winds. Science 303, 978–983.

de Deckker, P. (2016). The Indo-Pacific Warm Pool: critical to world oceanography and world climate. In Geoscience Letters (Vol. 3, Issue 1). SpringerOpen.

Djamil, Y. S. (2018). Mid-Holocene Climate Change Over The Maritime Continent : Impact, Attribution and Mechanism. Doctoral Dissertation. Nanyang Technology University.

Hendrizan, M., Kuhnt, W., & Holbourn, A. (2017). Variability of Indonesian Throughflow and Borneo Runoff During the Last 14 kyr. Paleoceanography, 32(10), 1054–1069.

Indermu, A., Stocker, T. F., Joos, F., Fischer2, H., Smith2, H. J., Wahlen2, M., Deck2, B., Mastroianni2, D., Tschumi, J., Blunier, T., Meyer, R., & Stauffer, B. (1999). Holocene carbon-cycle dynamics based on CO 2 trapped in ice at Taylor Dome, Antarctica. www.nature.com

Kida, S., & Wijffels, S. (2012). The impact of the Indonesian Throughflow and tidal mixing on the summertime sea surface temperature in the western Indonesian Seas. Journal of Geophysical Research: Oceans, 117(C9).

Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., & Levrard, B. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics, 428(1), 261–285.

Lestari, R.K. and Iwasaki, T., (2006). A GCM study on the roles of the seasonal marches of the SST and land-sea thermal contrast in the onset of the Asian summer monsoon. Journal of the Meteorological Society of Japan. Ser. II, 84(1), pp.69-83

McSweeney, Carol F. & Richard G. Jones. (2016). How representative is the spread of climate projections from the 5 CMIP5 GCMs used in ISI-MIP., Climate Services, Volume 1, 2016, Pages 24-29, ISSN 2405-8807.

Rachmayani, R., Prange, M., & Schulz, M. (2016). Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15. Climate of the Past, 12(3), 677–695.

Rachmayani, R., Prange, M., Schulz, M., & Ningsih, N. S. (2019). Climate variability in Indonesia from 615 ka to present: First insights from low-resolution coupled model simulations. Erde, 150(4), 230–240.

Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401(6751), 360–363.

Seo, H., Jochum, M., Murtugudde, R., Miller, A.J., (2006). Effect of ocean mesoscale variability on the mean state of tropical Atlantic climate. Geophys. Res. Lett. 33, L09606

Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., & Vieira, L. E. A. (2012). Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geoscientific Model Development, 5(1), 185–191. h

Schröder, J. F., Kuhnt, W., Holbourn, A., Beil, S., Zhang, P., Hendrizan, M., & Xu, J. (2018). Deglacial Warming and Hydroclimate Variability in the Central Indonesian Archipelago. Paleoceanography and Paleoclimatology, 33(9), 974–993.

Small, R. J., deSzoeke, S. P., Xie, S. P., O’Neill, L., Seo, H., Song, Q., Cornillon, P., Spall, M., & Minobe, S. (2008). Air-sea interaction over ocean fronts and eddies. Dynamics of Atmospheres and Oceans, 45(3–4), 274–319.

Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S., Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S., Vertenstein, M., & Yeager, S. (2010). The Parallel Ocean Program (POP) Reference Manual Ocean Component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM) 1.

Smith, S. D. (1988). Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. Journal of Geophysical Research: Oceans, 93(C12), 15467–15472.

Spooner, M. I., Barrows, T. T., de Deckker, P., & Paterne, M. (2005). Palaeoceanography of the Banda Sea, and Late Pleistocene initiation of the Northwest Monsoon. Global and Planetary Change, 49(1–2), 28–46.

Strahler, A. H. (2001). Introducing Physical Geography. John Wiley & Sons Incorporated.

Timmermann, A., An, S. il, Kug, J. S., Jin, F. F., Cai, W., Capotondi, A., Cobb, K., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Stein, K., Wittenberg, A. T., Yun, K. S., Bayr, T., Chen, H. C., Chikamoto, Y., Dewitte, B., Dommenget, D., Grothe, P., … Zhang, X. (2018). El Niño–Southern Oscillation complexity. In Nature (Vol. 559, Issue 7715, pp. 535–545). Nature Publishing Group.

Vic, C., Naveira Garabato, A. C., Green, J. A. M., Waterhouse, A. F., Zhao, Z., Melet, A., de Lavergne, C., Buijsman, M. C., & Stephenson, G. R. (2019). Deep-ocean mixing driven by small-scale internal tides. Nature Communications, 10(1). h

Yan, X.-H., Ho, C.-R., Zheng, Q., & Klemas, V. (1991). Temperature and Size Variabilities of the Western Pacific Warm Pool. In Int. J. Quantum Chem (Vol. 255).



DOI: https://doi.org/10.22146/ijg.75502

Article Metrics

Abstract views : 1072 | views : 600

Refbacks





Copyright (c) 2022 Andreas Siswandi, Yudha Setiawan Djamil, Rima Rachmayani, Sri Yudawati Cahyarini, Marfasran Hendrizan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC