Runoff Coefficient in the Air Bengkulu Watershed and the Evaluation of the Existing Spatial Planning
Bambang Sulistyo(1*), Teguh Adiprasetyo(2), Bambang Gonggo Murcitro(3), Agus Joko Purwadi(4), Noviyanti Listyaningrum(5)
(1) Soil Science Study Program, Faculty of Agriculture, University of Bengkulu, Bengkulu, Indonesia
(2) Soil Science Study Program, Faculty of Agriculture, University of Bengkulu, Bengkulu, Indonesia
(3) Soil Science Study Program, Faculty of Agriculture, University of Bengkulu, Bengkulu, Indonesia
(4) Education of Indonesian Language Study Program, Faculty of Teaching and Education Science, University of Bengkulu, Bengkulu, Indonesia
(5) Center for Disaster Studies, Universitas Gadjah Mada, Yogyakarta, Indonesia and Doctoral Program of Environmental Science, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author
Abstract
Runoff coefficient plays a crucial role in estimating the peak discharge of a river basin. Therefore, this research aimed to investigate runoff coefficient in the Air Bengkulu watershed based on temporal land cover data and evaluate the existing spatial planning. Land cover data from 1998, 2002, 2016, and 2023, with spatial patterns derived from current regional planning were used. The temporal and spatial pattern-based runoff coefficients were determined using land cover data and spatial pattern function, respectively. Meanwhile, descriptive and comparative methods were adopted based on time. The calculated runoff coefficient was 0.073, 0.093, 0.276, and 0.273 for 1998, 2002, 2016, and 2023, while the value obtained based on spatial patterns was 0.306. Additionally, a general trend of increasing the values over time was observed. Land cover change, particularly the decline of forest areas and the expansion of settlement and plantation, contributed to the rising runoff coefficient. The results showed that runoff coefficient (0.306) exceeded the current land cover, similar to other analyses with higher runoff in the predicted scenario. This research suggested a need for a more detailed classification system and scale to accommodate land cover types with relatively low runoff coefficient. In risk assessment, land cover-like spatial patterns with low runoff coefficient should be placed as capacity other than vulnerability components.
Keywords
Full Text:
PDFReferences
Adnan, N. A., & Atkinson, P. M. (2011). Exploring the impact of climate and land use changes on streamflow trends in a monsoon catchment. International Journal of Climatology, 31(6), 815–831. https://doi.org/10.1002/joc.2112
Algeet-Abarquero, N., Marchamalo, M., Bonatti, J., Fernández-Moya, J., & Moussa, R. (2015). Implications of land use change on runoff generation at the plot scale in the humid tropics of Costa Rica. Catena, 135, 263–270. https://doi.org/10.1016/j.catena.2015.08.004
Alkema, D., & Middelkoop, H. (2007). The influence of floodplain compartmentalization on flood risk within the Rhine-Meuse delta. In S. Begum, M. J. F. Stive, & J. W. Hall (Eds.). Flood Risk Management in Europe: Innovation in Policy and Practice, 21–42. Springer. https://doi.org/10.1007/978-1-4020-4200-3_2
Afriyanie, D., Julian, M. M., Riqqi, A., Akbar, R., Suroso, D. S. A., & Kustiwan, I. (2020). Re-framing urban green spaces planning for flood protection through socio-ecological resilience in Bandung City, Indonesia. Cities, 101, (102710). https://doi.org/10.1016/j.cities.2020.102710
Andualem, T. G., Peters, S., Hewa, G. A., Boland, J., & Myers, B. R. (2023). Spatiotemporal trends of urban-induced land use and land cover change and implications on catchment surface imperviousness. Applied Water Science, 13(223). https://doi.org/10.1007/s13201-023-02029-7
Arsiso, B. K., & Tsidu, G. M. (2023). Land use and land cover change modulates hydrological flows and water supply to Gaborone dam catchment, Botswana. Water, 15(3364). https://doi.org/10.3390/w15193364
Asmara, B., & Randhir, T. O. (2024). Modeling the impacts of oil palm plantations on water quantity and quality in the Kais River Watershed of Indonesia. Science of The Total Environment, 928(172456). https://doi.org/10.1016/j.scitotenv.2024.172456
Aziz, M. T., Islam, M. R., Kader, Z., Imran, H. M., Miah, M., Islam, M. R., & Salehin, M. (2023). Runoff assessment in the Padma River Basin, Bangladesh: a GIS and RS platform in the SCS-CN approach. Journal of Sedimentary Environments, 8(2), 247–260. https://doi.org/10.1007/s43217-023-00133-x
Barchia, M. F., Sulistyo, B., Hindarto, K. S., & Suhartoyo, H. (2020). Assessment of Air Bengkulu (Indonesia) watershed based on agroecosystem landscape quality and sustainable land use plan. Biodiversitas, 21(11), 5422–5430. https://doi.org/10.13057/biodiv/d211150
Bedient, P. B., Hubber, W. C., & Vieux, B. E. (2013). Hydrology and Floodplain Analysis (5th ed.). Pearson.
BNPB [Badan Nasional Penanggulangan Bencana]. (2019). Modul Teknis Penyusunan Kajian Risiko Bencana Banjir. Jakarta: Direktorat Pengurangan Risiko Bencana Badan Nasional Penanggulangan Bencana.
BPBD [Badan Penanggulangan Bencana Daerah] Provinsi Bengkulu. (2019). Tabel Rekapitulasi Kejadian Bencana Provinsi Bengkulu Tahun 2016-2019 Provinsi Bengkulu.
BPBD Provinsi Bengkulu. (2020). Laporan Kejadian Bencana Provinsi Bengkulu Tahun 2020. Bengkulu: Pusdalops BPBD Provinsi Bengkulu.
BPBD Provinsi Bengkulu. (2021). Laporan Kejadian Bencana Provinsi Bengkulu 2021. Bengkulu: Pusdalops BPBD Provinsi Bengkulu.
Cardona, O.D., van Aalst, M.K., Birkmann, J., Fordham, M., McGregor, G., Perez, R., Pulwarty, R.S., Schipper, E.L.F., & Sinh, B.T. (2012). Determinants of risk: exposure and vulnerability. In C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, & P.M. Midgley (Eds.). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), 65-108. Cambridge University Press, Cambridge, UK, and New York, NY, USA.
Criado, M., Martínez-Graña, A., Sánchez San Román, J., & Santos-Francés, F. (2019). Flood risk evaluation in urban spaces: The study case of Tormes river (Salamanca, Spain). International Journal of Environmental Research and Public Health, 16(5), 1–19. https://doi.org/10.3390/ijerph16010005
Dai, W. (2021). Spatial Planning and Design for Resilience: The Case of Pearl River Delta. TU Delft BK. https://doi.org/doi.org/10.7480/abe.2021.03
Faski, G. I. S. L., Purnama, I. L. S., & Suprayogi, S. (2021). Analisis karakteristik fisik dan meteorologi DAS Bengkulu. Megasains, 12(2), 27–34. https://doi.org/10.46824/megasains.v12i2.69
Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E., Meehl, G. A., & Washington, W. M. (2005). The importance of land-cover change in simulating future climates. Science, 310, 1674–1678. https://doi.org/10.1126/science.1118160
Gómez, A. J. S., Baldassarre, G. Di, Rodhe, A., & Pohjola, V. A. (2015). Remotely sensed nightlights to map societal exposure to hydrometeorological hazards. Remote Sensing, 7(9), 12380–12399. https://doi.org/10.3390/rs70912380
Guizani, D., Buday-Bódi, E., Tamás, J., & Nagy, A. (2024). Enhancing water balance assessment in urban areas through high-resolution land cover mapping: Case study of Debrecen, Hungary. Environmental Challenges, 15, 100906). https://doi.org/10.1016/j.envc.2024.100906
Gunawan, G. (2017). Analisis data hidrologi sungai Air Bengkulu menggunakan metode statistik. Inersia, 9(1), 47–58. https://doi.org/10.33369/ijts.9.1.47-58
Hernández-Guzmán, R., Ruiz-Luna, A., & Berlanga-Robles, C. A. (2008). Assessment of runoff response to landscape changes in the San Pedro subbasin (Nayarit, Mexico) using remote sensing data and GIS. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 43(12), 1471–1482. https://doi.org/10.1080/10934520802253465
Hernoza, F., Susilo, B., & Erlansari, A. (2020). Pemetaan daerah rawan banjir menggunakan penginderaan jauh dengan metode normalized difference water index dan simple additive weighting (Studi kasus: Kota Bengkulu). Rekursif, 8(2), 144–152. https://doi.org/10.33369/rekursif.v8i2.10562
Hiep, N. H., Luong, N. D., Ni, C. F., Hieu, B. T., Huong, N. L., & Du Duong, B. (2023). Factors influencing the spatial and temporal variations of surface runoff coefficient in the Red River basin of Vietnam. Environmental Earth Sciences, 82(56), 1–16. https://doi.org/10.1007/s12665-022-10726-w
Hiwasaki, L., Luna, E., Syamsidik, & Shaw, R. (2014). Process for integrating local and indigenous knowledge with science for hydro-meteorological disaster risk reduction and climate change adaptation in coastal and small island communities. International Journal of Disaster Risk Reduction, 10, 15–27. https://doi.org/10.1016/j.ijdrr.2014.07.007
Hizbaron, D. R., Baiquni, M., Sartohadi, J., & Rijanta, R. (2012). Urban Vulnerability in Bantul District, Indonesia—Towards Safer and Sustainable Development. Sustainability, 4, 2022–2037. https://doi.org/10.3390/su4092022
Inter-American Development Bank. (2011). Indicators for Disaster Risk and Risk Management: Programme for Latin-America and The Caribbean (Issue August).
Islam, S. U., & Chakma, S. (2024). Impact of LULC changes on hydrological flow regimes and runoff coefficient in Upper Jhelum Basin, India. Sustainable Water Resources Management, 10(1), 1–15. https://doi.org/10.1007/s40899-023-00987-z
James, L. A., Harden, C. P., & Clague, J. J. (2013). Geomorphology of human disturbances, climate change, and hazards. In J. Shroder, L. A. James, C. P. Harden, & J. J. Clague (Eds.), Treatise on Geomorphology: Geomorphology of Human Disturbances, Climate Change, and Natural Hazards, 1–13. Elsevier. https://doi.org/http://dx.doi.org/10.1016/B978-0-12-374739-6.00339-0
Khor, J. F., Lim, S., & Ling, L. (2023). Evaluating the Effect of Deforestation on Decadal Runoffs in Malaysia Using the Revised Curve Number Rainfall Runoff Approach. Water, 15, 1392. https://doi.org/10.3390/w15071392
Knox, J. C. (1977). Human impacts on Wisconsin stream channels. Annals of the Association of American Geographers, 67(3), 323–342. https://doi.org/10.1111/j.1467-8306.1977.tb01145.x
Kodoatie, R.J., Syarief, R. (2005). Pengelolaan Sumber Daya Air Terpadu. Yogyakarta: Andi.
Kumari, M., Diksha, Kalita, P., Mishra, V.N., Choudhary, A., Abdo, H.G., Rainfall-runoff modelling using GIS based SCS-CN method in Umiam catchment region, Meghalaya, India. Physics and Chemistry of the Earth, https://doi.org/10.1016/j.pce.2024.103634 (in pre-proof).
Langemeyer, J., Gómez-Baggethun, E., Haase, D., Scheuer, S., & Elmqvist, T. (2016). Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environmental Science and Policy, 62, 45–56. https://doi.org/10.1016/j.envsci.2016.02.013
Li, J. (2022). Evaluation methods for water resource suitability in territorial spatial planning: A case study of Baiyin city in a semi-arid region. International Journal of Environmental Research and Public Health, 19, 12973. https://doi.org/10.3390/ijerph191912973
Li, Y., Liu, X., Wang, Y., & He, Z. (2023). Simulating multiple scenarios of land use/cover change using a coupled model to capture ecological and economic effects. Land Degradation and Development, 1–18. https://doi.org/10.1002/ldr.4653
Liu, L., Dobson, B., & Mijic, A. (2023). Optimisation of urban-rural nature-based solutions for integrated catchment water management. Journal of Environmental Management, 329, 117045. https://doi.org/10.1016/j.jenvman.2022.117045
Liu, P., Jiang, Z., Li, Y., Lan, F., Sun, Y., & Yue, X. (2023). Quantitative study on improved Budyko-based separation of climate and ecological restoration of runoff and sediment yield in Nandong underground river system. Water, 15, 1263. https://doi.org/10.3390/w15071263
Liu, Y., Zhou, Y., Yu, J., Li, P., & Yang, L. (2021). Green space optimization strategy to prevent urban flood risk in the city centre of Wuhan. Water, 13, 1617. https://doi.org/10.3390/w13111517
Mahmoud, S. H., & Alazba, A. A. (2015). Hydrological response to land cover changes and human activities in arid regions using a geographic information system and remote sensing. PLoS ONE, 10(4), e0125805. https://doi.org/10.1371/journal.pone.0125805
Marino, D., Palmieri, M., Marucci, A., Soraci, M., Barone, A., & Pili, S. (2023). Linking flood risk mitigation and food security: an analysis of land-use change in the metropolitan area of Rome. Land, 12, 366. https://doi.org/10.3390/land12020366
Merten, J., Stiegler, C., Hennings, N., Purnama, E. S., Röll, A., Agusta, H., Dippold, M. A., Fehrmann, L., Gunawan, D., Hölscher, D., Knohl, A., Kückes, J., Otten, F., Zemp, D. C., & Faust, H. (2020). Flooding and land use change in Jambi Province, Sumatra: integrating local knowledge and scientific inquiry. Ecology and Society, 25(3), 14. https://doi.org/10.5751/ES-11678-250314
Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-being: Synthesis. Island Press.
Oukes, C., Leendertse, W., & Arts, J. (2022). Enhancing the use of flood resilient spatial planning in Dutch water management: A study of barriers and opportunities in practice. Planning Theory and Practice, 23(2), 212–232. https://doi.org/10.1080/14649357.2022.2034921
Park, K., Oh, H., & Won, J. H. (2021). Analysis of disaster resilience of urban planning facilities on urban flooding vulnerability. Environmental Engineering Research, 26(1), 190529. https://doi.org/10.4491/eer.2019.529
Pauli, N., Williams, M., Henningsen, S., Davies, K., Chhom, C., van Ogtrop, F., Hak, S., Boruff, B., & Neef, A. (2021). “Listening to the sounds of the water”: Bringing together local knowledge and biophysical data to understand climate-related hazard dynamics. International Journal of Disaster Risk Science, 12, 326–340. https://doi.org/10.1007/s13753-021-00336-8
Peraturan Daerah Kota Bengkulu Nomor 4 Tahun 2021 tentang Rencana Tata Ruang Wilayah Kota Bengkulu Tahun 2021-2041 (Regional Regulation of Bengkulu City Number 4 of 2021 concerning the Spatial Plan of Bengkulu City for the period 2021-2041)
Peraturan Daerah Kabupaten Bengkulu Tengah Nomor 15 Tahun 2012 tentang Rencana Tata Ruang Wilayah Kabupaten Bengkulu Tengah Tahun 2012-2032 (Regional Regulation of Central Bengkulu Regency Number 15 of 2012 concerning the Spatial Plan of Central Bengkulu Regency for the period 2012-2032)
Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., & Hyndman, D. W. (2018). A review of the integrated effects of changing climate, land use, and dams on Mekong river hydrology. Water, 10, 266. https://doi.org/10.3390/w10030266
Rahminadini, N., Tambunan, M. P., & Rustanto, A. (2021). Perubahan tutupan lahan dan prediksi terhadap tingkat bahaya banjir di Sub-DAS Cikapundung Kota Bandung. Prosiding Seminar Nasional Kebijakan Satu Peta dan Implementasinya untuk Perencanaan Wilayah (DAS) dan Mitigasi Bencana, 125–133.
Ramezani, M. R., Helfer, F., & Yu, B. (2023). Individual and combined impacts of urbanization and climate change on catchment runoff in Southeast Queensland, Australia. Science of the Total Environment, 861, 160528. https://doi.org/10.1016/j.scitotenv.2022.160528
Santamarta, J.C., Rodríguez-Martín, J., Cruz-Pérez, N. (2023). Flood risk management plans in volcanic islands: Analysis, discussion, and lessons learned in the Canary islands. In: Chenchouni, H. et al. Recent Research on Hydrogeology, Geoecology and Atmospheric Sciences. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-43169-2_7
Scaini, A., Stritih, A., Brouillet, C., & Scaini, C. (2021). Flood risk and river conservation: mapping citizen perception to support sustainable river management. Frontiers in Earth Science, 9, 675131. https://doi.org/10.3389/feart.2021.675131
Setiawan, Y., Purwandari, E. P., Wijanarko, A., & Sunandi, E. (2020). Pemetaan zonasi rawan banjir dengan analisis indeks rawan banjir menggunakan metode fuzzy simple adaptive weighting. Pseudocode, 7(1), 78–87. https://doi.org/10.33369/pseudocode.7.1.78-87
Seyhan, E. 1990. Dasar-Dasar Hidrologi. Yogyakarta: Gadjah Mada University Press.
Shi, P. (2019). Disaster Risk Assessment. In P. Shi (Ed.), Disaster Risk Science, 225–328. Springer. https://doi.org/10.1007/978-981-13-6689-5_5
Shigute, M., Alamirew, T., Abebe, A., Ndehedehe, C. E., & Kassahun, H. T. (2022). Understanding hydrological processes under land use land cover change in the upper Genale river basin, Ethiopia. Water, 14, 3881. https://doi.org/10.3390/w14233881
Sohail, M. T., & Chen, S. (2022). A systematic PLS-SEM approach on assessment of indigenous knowledge in adapting to floods; A way forward to sustainable agriculture. Frontiers in Plant Science, 13, 990785. https://doi.org/10.3389/fpls.2022.990785
Suprayogi, S., Widyastuti, M., Hadi, M. P., Christanto, N., Andryan, T., Fadhilah, G. O., Rahmawati, L., & Fadlillah, L. N. (2022). Runoff coefficient analysis after regional development in Tambakbayan watershed, Yogyakarta, Indonesia. Jurnal Ilmu Lingkungan, 20(2), 396–405. https://doi.org/10.14710/jil.20.2.396-405
Tarigan, S., Wiegand, K., Sunarti, & Slamet, B. (2018). Minimum forest cover required for sustainable water flow regulation of a watershed: A case study in Jambi Province, Indonesia. Hydrology and Earth System Sciences, 22(1), 581–594. https://doi.org/10.5194/hess-22-581-2018
Thiruchelve, S. R., Chandran, S., Kumar, V., & Chandramohan, K. (2024). Assessment of land use and land cover dynamics and its impact in direct runoff generation estimation using SCS CN method. Acta Geophysica. https://doi.org/10.1007/s11600-024-01315-5
Watson, C. S., Elliott, J. R., Ebmeier, S. K., Vásquez, M. A., Zapata, C., Bonilla-Bedoya, S., Cubillo, P., Orbe, D. F., Córdova, M., Menoscal, J., & Sevilla, E. (2022). Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador. Natural Hazards and Earth System Sciences, 22, 1699–1721. https://doi.org/10.5194/nhess-22-1699-2022
Wiwoho, B. S., Phinn, S., & McIntyre, N. (2023). Characterizing watersheds to support land-use planning in Indonesia: A case study of Brantas tropical watershed. Ecohydrology and Hydrobiology, 23, 635–649. https://doi.org/10.1016/j.ecohyd.2023.06.001
Yao, J., Liu, Z., Yang, Q., Meng, X., & Li, C. (2014). Responses of runoff to climate change and human activities in the Ebinur lake catchment, western China. Water Resources, 41(6), 738–747. https://doi.org/10.1134/S0097807814060220
Yu, H., Fu, D., Yuan, Z., Tang, J., Xiao, Y., Kang, L., Lyne, V., & Su, F. (2024). Regimes of global and national oil palm cultivations from 2001 to 2018. Global Environmental Change, 86, 102845. https://doi.org/10.1016/j.gloenvcha.2024.102845
Zullo, F., Montaldi, C., Di Pietro, G., & Cattani, C. (2022). Land use changes and ecosystem services: The case study of the Abruzzo region coastal strip. ISPRS International Journal of Geo-Information, 11, 588. https://doi.org/10.3390/ijgi11120588DOI: https://doi.org/10.22146/ijg.91397
Article Metrics
Abstract views : 1285 | views : 558Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Bambang - Sulistyo
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)
ISSN 2354-9114 (online), ISSN 0024-9521 (print)
IJG STATISTIC