Ancient Disaster, the Cause of the Burial of the Kumitir Archeological Site

https://doi.org/10.22146/ijg.91875

Amien Widodo(1*), Juan Pandu Gya Nur Rochman(2), M. Haris Miftakhul Fajar(3), Rodeano Roslee(4), Wicaksono Dwi Nugroho(5)

(1) Geophysical Engineering Department, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember
(2) Geophysical Engineering Department, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember
(3) Geophysical Engineering Department, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember
(4) Faculty of Science and Natural Resources, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
(5) Cultural Heritage Preservation Center (BPCB) East Java
(*) Corresponding Author

Abstract


The Kumitir site, associated with the Majapahit Empire, is a significant archeological discovery. Archeologists from the East Java  Cultural Heritage Preservation Center (BPCB), uncovered a structure at this site, buried beneath boulder-sized rocks. According to historical literature, the collapse of Majapahit was caused by volcanic eruptions from the Anjasmoro, Arjuno, or Welirang complexes. Therefore, this study aimed to recreate the gravity-driven mass flow covering the Kumitir Site. Geological surveys, including sediment structure analysis and grain orientation measurements, were conducted to provide new information on paleocurrent and ancient sedimentary processes at the site. Digital Elevation Map (DEM) and the Laharz simulation tool facilitated the creation of reconstructed lahar flow maps using open-source DEM data with an eight-meter resolution. The results of the boulder analysis showed that a paleochannel played a significant role in the burial site, with two sources identified, namely Mount Welirang (Welirang alluvial fan) and the Anjasmoro complex (Old Jatirejo alluvial fan). Meanwhile, the combination of methods applied signified the direction of the Welirang alluvial fan (ESE-NNW) and the Jatirejo Tua alluvial fan (SSW-NNE). Volumes of 9 million m3 and 65 million m3 were the most relevant parameters for estimating the lahar flows of the western and eastern craters, respectively.

Keywords


Anjasmoro; Kumitir Site; Lahar; Laharz; Majapahit

Full Text:

PDF


References

Adrisijanti, I. (ed.). (2014). Majapahit: Batas kota dan jejak kekayaan di luar kota. Yogyakarta: Kepel Press.

Arifaini, N. and Siregar, A.M. (2018). Penggunaan pondasi bored pile untuk melindungi pilar jembatan kereta api bh.1153 Bumiayu dari bahaya aliran debris. Pertemuan Ilmiah Tahunan XXXV HATHI.

Arisandy, A.S. and Sukojo, B.M. (2016). Studi penentuan aliran hidrologi metode steepest slope and lowest height dengan Aster GDEMV2 dan Alos Palsar (Studi Kasus: Gunung Kelud, Jawa Timur). Jurnal Teknik ITS, 5(2), 443-447.

Aruminingsih, A., Martono, D.N., Soesilo, T.E.B. and Tambunan, R.P. (2022). Flood disaster risk model in Karawang Regency’s industrial area, West Java Province, Indonesia. Indonesian Journal of Geography, 54, 70-82.

Brahmantyo, B. and Bandono (2006). Klasifikasi bentuk muka bumi (Landform) untuk pemetaan geomorfologi pada skala 1:25.000 dan aplikasinya untuk penataan ruang. Geoaplika, 1, 71-78.

Collinson, J.D. and Mountney, N.O. (2019). Sedimentary Structures fourth edition, Dunedin Academic Press.

Holmgren, P. (1994). Multiple flow direction algorithm for runoff modeling in grid-based elevation models: An empirical evaluation. Hydrological Processes, 8(4), 327-334.

Huggel, C., Schneider, D., Miranda, P.J., Granado, H.D. and Kaab, A. (2008). Evaluation of ASTER and SRTM DEM data for lahar modeling: A case study on lahars from Popocatepetl Volcano, Mexico. Journal of Volcanology and Geothermal Research, 170(1-2), 99-110.

Jenson, S.K. and Domingue, J.O. (1988). Extracting topographic structure from digital elevation data from geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593-1600.

Lee, S.K., Lee, C.W. and Lee, S. (2015). A comparison of the Landsat image and Laharz-simulated lahar inundation hazard zone by the 2010 Merapi eruption. Bulletin of Volcanology, 77(6).

Muñoz-Salinas, E., Castillo-Rodriguez, M., Manea, V., Manea, M. and Palacios, D. (2009). Lahar flow simulations using LAHARZ program: application for the Popocatepetl volcano, Mexico. Journal of Volcanology and Geothermal Research, 182(1-2), 13-22.

O’Callaghen, J.F. and Mark, D.M. (1984). The extraction of drainage networks from elevation data. Computer Vision, Graphics and Image Processing, 47(1), 45-87.

Park, S.J. and Lee, C.W. (2018). Inundation hazard zone created by large lahar flow at the Baekdu Volcano Simulated using LAHARZ. Korean Journal of Remote Sensing, 34(1), 75-87.

Peckham, R.J. and Jordan, G. (2007). Lecture notes in geoinformation and cartography: Digital terrain modeling development and applications in a policy support environment. Springer-Verlag Berlin Heidelberg.

Procter, J., Zernack, A., Mead, S. and Morgan, M. (2020). A review of lahars; past deposits, historic events, and present-day simulations from Mt. Ruapehu and Mt. Taranaki, New Zealand. New Zealand Jounral of Geology and Geophysics, 64(6), 1-25.

Santosa, S. and Atmawinata, S. (1992). Peta Geologi Lembar Kediri, Jawa. Bandung: Pusat Penelitian dan Pengembangan Geologi.

Santosa, S. and Suwarti, T. (1992). Peta Geologi Lembar Malang, Jawa. Bandung: Pusat Penelitian dan Pengembangan Geologi.

Satyana, A.H. (2007). Bencana geologi dalam “Sandhyakala” Jenggala dan Majapahit: Hipotesis erupsi gununglumpur historis berdasarkan Kitab Pararaton, Serat Kanda, Babad. Proceedings Joint Convention Bali, 13-16.

Schilling, S. (2014). Laharz_py: GIS tools for automated mapping of lahar inundation hazard zones. U.S. Geological Survey.

Suhendro, I., Haryono, E., (2023). Typology of Indonesian Stratovolcanoes: Insights from Geomorphological and Geological aspects. Indonesia. J. Geogr. 55, 277–290. https://doi.org/10.22146/ijg.74692

Sutikno. (1993). “Kondisi Geografis Keraton Majapahit”, in Sartono Kartodirdjo, dkk.,700 Tahun Majapahit Suatu Bunga Rampai, Surabaya: Dinas Pariwisata Daerah Propinsi Daerah Tingkat I Jawa Timur.

Syarifuddin, M., Oishi, S. and Legono, D. (2016). Lahar flow simulation in Merapi volcanic area by hyperkanako model. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 72(4), 865-870.

Thouret, J.C., Antoine, S., Magill, C. and Ollier, C. (2020). Lahars and debris flow Characteristics and impacts. Earth-Science Reviews, 201.

Thouret, J.C., Lavigne, F., Suwa, H. Sukatja, C.B. (2007). Volcanic hazards at Mount Semeru, East Java (Indonesia), with emphasis on lahars. Bulletin of Volcanology, 70(2), 221-244.

Wirasanti, N. and Murwanto, H. (2020). The reconstruction of a Javanese civilization cultural landscape in 8 AD based on Canggal Inscription in Gendol Hill Complex, Magelang, Central Java. Indonesian Journal of Geography, 52. 128-134.

Zhou, Q. (2017). Digital elevation model and digital surface model. International Encyclopedia of Geography: People, the Earth, Environment and Technology, 1-17.



DOI: https://doi.org/10.22146/ijg.91875

Article Metrics

Abstract views : 1137 | views : 480

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Amien Widodo, Juan Pandu Gya Nur Rochman, Eko Haryono, Wicaksono Dwi Nugroho

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC