Seismic Vulnerability of Semarang, Indonesia for Shallow Crustal Fault Earthquake

https://doi.org/10.22146/ijg.95057

Windu Partono(1*), Masyhur Irsyam(2), Muhammad Asrurifak(3), Undayani Cita Sari(4), Victor Victor(5)

(1) Civil Engineering Department, Engineering Faculty, Diponegoro University, Semarang, Indonesia
(2) Civil Engineering Department, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Bandung, Indonesia
(3) Faculty of Civil Engineering and Planning, Institut Sains dan Teknologi Nasional, Jakarta, Indonesia
(4) Civil Engineering Department, Engineering Faculty, Diponegoro University, Semarang, Indonesia
(5) Civil Engineering Department, Engineering Faculty, Diponegoro University, Semarang, Indonesia
(*) Corresponding Author

Abstract


In 2017, the National Centre for Earthquake Studies of Indonesia released the distribution of 25 shallow crustal fault lines throughout the island of Java in Indonesia and four of them (Semarang, Demak, Rawapening and Weleri fault lines) are located around the city of Semarang. The presence of four shallow crustal fault earthquake sources, has led to the need to understand the potential earthquake hazards of Semarang through the development of earthquake-microzoning maps. Earthquake-microzoning maps of Semarang should be developed with reference to the Indonesian earthquake hazard maps and based on the deterministic and probabilistic seismic hazard approaches. Through the development of earthquake-microzoning maps, it is possible to estimate the areas with the highest and lowest surface-shaking (peak ground acceleration). The earthquake-microzoning maps based on the Semarang and Demak fault earthquake scenarios provide a preliminary indication that buildings constructed using the Indonesian Seismic Code (SNI 1726:2002) will experience stronger surface-shaking if the earthquake magnitude from both sources is at least M5.5. The results of the analysis for the creation of earthquake-microzoning maps based on the Rawapening and Weleri fault earthquake scenarios provide a preliminary indication that buildings constructed using SNI 1726:2002 are expected to experience slightly weaker ground-shaking if the earthquake magnitude from both sources reaches a maximum of M6.5. All buildings constructed in this area using SNI 1726:2012 and SNI 1726:2019 are expected to experience weaker surface-shaking due to the four earthquake source scenarios with a maximum magnitude of M6.5.

Keywords


earthquake-microzoning; deterministic; peak ground acceleration; fault; probabilistic



References

Abrahamson, N. A., & Silva, W. J. (2008). Summary of the Abrahamson & Silva NGA ground-motion relations. Earthquake Spectra, 24(1), 67-97.

Abrahamson, N., Silva, W., & Kamai, R. (2014). Update of the AS08 ground-motion prediction equations based on the NGA-West2 Data Set. PEER Report No. 2013/04, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.

Boore, D. M., & Atkinson, G. M. (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra, 24(1), 99-138.

Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West 2 equations for predicting PGA, PGV, and 5%-damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057-1085.

Campbell, K. W., & Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24(1), 139-171.

Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 Campbell-Bozorgnia ground motion model for the horizontal components of PGA, PGV and 5%-damped elastic pseudo-acceleration response spectra for periods ranging from 0.01 to 10 sec. Pacific Earthquake Engineering Research Center, PEER Report 2013/6, pp. xii+75.

Chiou, B. S. J., & Youngs, R. R. (2008). NGA model for average horizontal component of peak ground motion and response spectra. PEER 2008/09, Pacific Engineering Research Center, College of Engineering, University of California, Berkeley.

Chiou, B. S. J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA ground motion model for average horizontal component of peak ground motion and response spectra. PEER Report 2013/07, Pacific Earthquake Engineering Research Center Headquarters at the University of California, Berkeley.

Elnashai, A., Kim, S. J., Yun, G. J., & Sidharta, D. (2007). The Yogyakarta Earthquake of May 27, 2006. Mid-America Earthquake (MAE) Center Report, No 07-02.

Firmansyah, D. S., & Rohyan, J. (2019). The risk assessment of multi hazard area: A case of mitigation consider in spatial planning of Bukittinggi City. Indonesian Journal of Geography, 51(3).

Gregor, N. J., Addo, K. O., Abrahamson, N. A., & Youngs, R. R. (2012). Comparison of BC hydro subduction GMPE to data from recent large megathrust earthquakes. 15 WCEE, USBCA 2012.

Idriss, I. M. (2008). An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 24(1), 217-242.

Idriss, I. M. (2014). An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 30(3), 1155-1177.

Irsyam, M., Hutabarat, D., Asrurifak, M., Imran, I., Widiyantoro, S., Hendriyawan, Sadisun, I., Hutapea, B., Alamsyah, T., Pindratno, H., Firmanti, A., Ridwan, M., Harijono, S. W., & Pandhu, R. (2015). Development of seismic risk microzonation maps of Jakarta. In Geotechnics for catastrophic flooding events. CRS Press.

Maze, L. Z., Sugianto, N., & Refrozon. (2021). Seismic hazard microzonation of Bengkulu City, Indonesia. Geoenvironmental Disasters, 8, 5. https://doi.org/10.1186/s40677-021-00178-y.

National Center for Earthquake Studies (PuSGeN). (2017). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017/ Indonesian earthquake source and hazard map 2017. ISBN: 978-602-5489-01-3.

Partono, W., Wardani, S. P., Irsyam, M., & Maarif, S. (2016). Development of seismic microzonation maps of Semarang, Indonesia. Jurnal Teknologi, 77(11), 99-107.

Partono, W., Asrurifak, M., Tonnizam, E., Kistiani, F., Undayani Cita Sari, U. C., & Putra, K. C. A. (2021). Site soil classification interpretation based on standard penetration test and shear wave velocity data. J. Eng. Technol. Sci., 53(2).

Partono, W. (2023). Mikrozonasi Bahaya Gempa Kota Semarang / Earthquake microzoning hazards of Semarang. Undip Press. ISBN 978-623-417-231-7.

Pranata, B., & Triyono, R. (2021). Microzonation of DKI Jakarta Indonesia using HVSR method. CTBT Science and Technology Conference 2021 (SnT2021).

Ridwan, M., Widiyantoro, S., Irsyam, M., Faizal, L., Cummins, P. R., Rawlinson, N., & Goro, G. L. (2024). Seismic microzonation of Bandung, West Java: site characterization and its implications for seimic hazard. Natural Hazards. https://doi.org/10.1007/s11069-024-07010-4.

SNI 1726:2002. (2002). Standar Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung/ Earthquake resistance standard design for building structures. Departemen Pemukiman dan Prasarana Wilayah, Badan Penelitian dan Pengembangan Pemukiman dan Prasarana Wilayah, Pusat Penelitian dan Pengembangan Teknologi Pemukiman, Oktober, 2001.

SNI 1726:2012. (2012). Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung / Earthquake resistance standard design procedure for building and non-building structures. Badan Standarisasi Nasional, No. ICS 91.120.25; 91.080.01.

SNI 1726:2019. (2019). Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung / Earthquake resistance standard design procedure for building and non-building structures. Badan Standarisasi Nasional, No. ICS 91.120.25; 91.080.01.

Thanden, R. E., Sumadirdja, H., Richards, P. W., Sutisna, K., & Amin, T. C. (1996). Peta Geologi Lembar Magelang and Semarang skala 1(100.000) / Geologic map of Magelang and Semarang Sheet scale 1:100000.

Youngs, R. R., Chiou, S. J., Silva, W. J., & Humprey, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismol, Res. Lett., 68, 58-73.

Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H., & Somerville, P. (2006). Attenuation relations of strong motion in Japan using site classification based on predominant period. Bull. Seismol. Soc. Am., 96, 898.



DOI: https://doi.org/10.22146/ijg.95057

Article Metrics

Abstract views : 347

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Authors and Indonesian Journal of Geography

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC