Comparative Analysis of HAND with TWI Flood-Prone Mapping Models in Data-Scarce Areas
Ajun Purwanto(1*), Dony Andrasmoro(2), Eviliyanto Eviliyanto(3)
(1) Departement of Geography Education, PGRI Pontianak University, Pontianak, Indonesia
(2) Departement of Geography Education, PGRI Pontianak University, Pontianak, Indonesia
(3) Departement of Geography Education, PGRI Pontianak University, Pontianak, Indonesia
(*) Corresponding Author
Abstract
Flood is one of the most frequent natural disasters in Indonesia and worldwide. Therefore, this study aimed to compare and evaluate flood-prone mapping model using Height Above Nearest Drainage (HAND) and Topographic Wetness Index (TWI) model in data-scarce areas. HAND and TWI models were used to estimate flood-prone level, with field survey and image interpretation as primary methodologies. The data used was Digital Elevation Model (DEM) imagery with a resolution of 10 meters, incorporating elevation, slope, and hydrological parameters namely flow accumulation, direction, and distance. The mapping flood-prone areas were categorized as very prone, prone, moderate, not prone, and very not prone. The results showed that there were differences between HAND and TWI models in terms of area and percentage. The differences in flood inundation characteristics produced by HAND model were mainly due to variations in elevation and proximity to drainage channels. In contrast, TWI model focused on topography, soil moisture, and runoff potential. The differences between the two models also emphasized the importance of terrain characteristics in model predictions. The comparable predictive ability of HAND and TWI models presents an alter
Received: 2024-08-15 Revised: 2 024-09-12Accepted: 2025-03-22 Published: 2025-05-26
Keywords
Full Text:
PDFReferences
Albano, R., Samela, C., Crăciun, I., Manfreda, S., & ... (2020). Large scale flood risk mapping in data scarce environments: An application for Romania. Water. https://doi.org/10.3390/w12061834.
Alemayehu, Z. (2007). Modeling of Flood hazard management for forecasting and emergency response of ‘Koka’area within Awash River basin using remote sensing and GIS method. Addis Ababa University.
Althuwaynee, O. F., Pradhan, B., & Lee, S. (2012). Computers & Geosciences Application of an evidential belief function model in landslide susceptibility mapping. Computers and Geosciences, 44, 120–135. https://doi.org/10.1016/j.cageo.2012.03.003.
Arnell, N. W., & Gosling, S. N. (2016). The impacts of climate change on river flood risk at the global scale. Climatic Change, 134, 387–401. https://doi.org/10.1007/s10584-014-1084-5.
Barnes, R., Lehman, C., & Mulla, D. (2014). An efficient assignment of drainage direction over flat surfaces in raster digital elevation models. Computers & Geosciences, 62, 128–135. https://doi.org/10.1016/j.cageo.2013.01.009.
Berhanu, B., & Bisrat, E. (2018). Identification of surface water storing sites using topographic wetness index (TWI) and normalized difference vegetation index (NDVI). JNRD-Journal of Natural Resources and Development, 8, 91–100. https://doi.org/10.1007/s12517-018-3952-1.
Bhatt, C. M., & Srinivasa Rao, G. (2018). HAND (height above nearest drainage) tool and satellite-based geospatial analysis of Hyderabad (India) urban floods, September 2016. Arabian Journal of Geosciences, 11(19), 600. https://doi.org/10.1007/s12517-018-3952-1.
Bui, D. T., Khosravi, K., Shahabi, H., & Daggupati, P. (2019). Flood Spatial Modeling in Northern Iran Using Remote Sensing and GIS : A Comparison between Evidential Belief Functions and Its Ensemble with a Multivariate Logistic Regression Model. https://doi.org/10.3390/rs11131589.
Bukvic, A., & Harrald, J. (2019). Rural versus urban perspective on coastal flood: The insights from the US Mid-Atlantic communities. Climate Risk Management, 23, 7–18. https://doi.org/10.1016/j.crm.2018.10.004.
Chaudhuri, C., Gray, A., & Robertson, C. (2021). InundatEd-v1. 0: a height above nearest drainage (HAND)-based flood risk modeling system using a discrete global grid system. Geoscientific Model Development, 14(6), 3295–3315. https://doi.org/10.5194/gmd-14-3295-2021.
Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F., & Mosavi, A. (2019). An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment, 651, 2087–2096. https://doi.org/10.1016/j.scitotenv.2018.10.064.
Coccia, G., Ceresa, P., Bussi, G., Denaro, S., Bazzurro, P., Martina, M., Fagà, E., Avelar, C., Ordaz, M., & Huerta, B. (2023). Large-scale flood risk assessment in data scarce areas: an application to Central Asia. Natural Hazards and Earth System Sciences Discussions, 2023, 1–33. https://doi.org/10.5194/nhess-2023-157.
Cutter, S. L., Ash, K. D., & Emrich, C. T. (2016). Urban–rural differences in disaster resilience. Annals of the American Association of Geographers, 106(6), 1236–1252. https://doi.org/10.1080/24694452.2016.1194740.
Dantas, A. A. R., & Paz, A. R. (2021). Use of HAND terrain descriptor for estimating flood-prone areas in river basins. Brazilian Journal of Environmental Sciences (Online), 56(3), 501–516. https://doi.org/10.5327/Z21769478892.
Desalegn, H., & Mulu, A. (2021). Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia. Heliyon, 7(1), e05865. https://doi.org/10.1016/j.heliyon.2020.e05865.
Deslauriers, S., & Mahdi, T.-F. (2018). Flood modelling improvement using automatic calibration of two dimensional river software SRH-2D. Natural Hazards, 91, 697–715. https://doi.org/10.1007/s11069-017-3150-6.
Dhote, P. R., Joshi, Y., Rajib, A., Thakur, P. K., Nikam, B. R., & Aggarwal, S. P. (2023). Evaluating topography-based approaches for fast floodplain mapping in data-scarce complex-terrain regions: Findings from a Himalayan basin. Journal of Hydrology, 620, 129309. DOI 10.1016/j.jhydrol.2023.129309.
Diehl, R. M., Gourevitch, J. D., Drago, S., & Wemple, B. C. (2021). Improving flood hazard datasets using a low-complexity, probabilistic floodplain mapping approach. In PloS one. journals.plos.org. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248683. https://doi.org/10.1371/journal.pone.0248683.
Fan, F. M., Collischonn, W., Sorribas, M. V., & Pontes, P. R. M. (2013). Sobre o início da rede de drenagem definida a partir dos modelos digitais de elevação. Rbrh: Revista Brasileira de Recursos Hídricos. Porto Alegre, RS. Vol. 18, n. 3 (Jul./Set. 2013), p. 241-257. https://doi.org/10.21168/rbrh.v18n3.p241-257
Gharari, S., Hrachowitz, M., Fenicia, F., & Savenije, H. H. G. (2011). Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment. Hydrology and Earth System Sciences, 15(11), 3275–3291. https://doi.org/10.5194/hess-15-3275-2011.
Gigović, L., Pamučar, D., Bajić, Z., & Drobnjak, S. (2017). Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water, 9(6), 360. https://doi.org/10.3390/w9060360.
Goerl, R. F., Michel, G. P., & Kobiyama, M. (2017). Mapeamento de áreas susceptíveis a inundação com o modelo HAND e análise do seu desempenho em diferentes resoluções espaciais. Revista Brasileira de Cartografia, 69(1). https://doi.org/10.14393/rbcv69n1-44032.
Grahn, T., & Nyberg, L. (2017). Assessment of pluvial flood exposure and vulnerability of residential areas. International Journal of Disaster Risk Reduction, 21, 367–375. https://doi.org/10.1016/j.ijdrr.2017.01.016.
Grayson, R. B., & Ladson, A. R. (1991). DIGITAL TERRAIN MODELLING : A REVIEW OF HYDROLOGICAL , GEOMORPHOLOGICAL , AND BIOLOGICAL APPLICATIONS. 5(September 1990), 3–30. https://doi.org/10.1002/hyp.3360050103.
Hagos, Y. G., Andualem, T. G., Yibeltal, M., & Mengie, M. A. (2022). Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin, Ethiopia. Applied Water Science, 12(7), 1–18. https://doi.org/10.1007/s13201-022-01674-8.
Henstra, D., Minano, A., & Thistlethwaite, J. (2019). Communicating disaster risk? An evaluation of the availability and quality of flood maps. Natural Hazards and Earth System Sciences, 19(1), 313–323.
Hu, A., & Demir, I. (2021a). Real-time flood mapping on client-side web systems using hand model. Hydrology, 8(2), 65. https://doi.org/10.3390/hydrology8020065.
Hu, A., & Demir, I. (2021b). Real-time flood mapping on client-side web systems using hand model. Hydrology. https://www.mdpi.com/1067816. https://doi.org/10.31223/X5M02R.
Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593–1600.
Johnson, J. M., Munasinghe, D., & ... (2019). An integrated evaluation of the national water model (NWM)–Height above nearest drainage (HAND) flood mapping methodology. In Natural Hazards and …. nhess.copernicus.org. https://doi.org/10.5194/nhess-19-2405-2019.
Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Nor, W., Sulaiman, A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS : Johor River Basin , Malaysia. 251–264. https://doi.org/10.1007/s12665-011-1504-z. https://doi.org/10.1007/s12665-011-1504-z
Kok, K., & Kim, J.-C. (2019). Identification of vulnerable regions to soil loss under the dynamic saturation process. Science of the Total Environment, 659, 1209–1223. DOI: 10.1016/j.scitotenv.2018.12.398
Komolafe, A. A., Awe, B. S., Olorunfemi, I. E., & Oguntunde, P. G. (2020). Modelling flood-prone area and vulnerability using integration of multi-criteria analysis and HAND model in the Ogun River Basin, Nigeria. Hydrological Sciences Journal, 65(10), 1766–1783. https://doi.org/10.1080/02626667.2020.1764960.
Latue, P. C., Imanuel Septory, J. S., Somae, G., & Rakuasa, H. (2023). Pemodelan Daerah Rawan Banjir di Kecamatan Sirimau Menggunakan Metode Multi-Criteria Analysis (MCA). Jurnal Perencanaan Wilayah Dan Kota, 18(1), 10–17. https://doi.org/10.29313/jpwk.v18i1.1964.
Latue, P. C., & Rakuasa, H. (2023). Identification of Flood-Prone Areas Using the Topographic Wetness Index Method in Fena Leisela District, Buru Regency. Journal Basic Science and Technology, 12(1), 20–24. DOI:10.1016/j.scitotenv.2022.154420.
Li, Z., & Demir, I. (2022). A comprehensive web-based system for flood inundation map generation and comparative analysis based on height above nearest drainage. Science of The Total Environment, 828, 154420. DOI: 10.1016/j.scitotenv.2022.154420.
Lindsay, J. B. (2016). The practice of DEM stream burning revisited. Earth Surface Processes and Landforms, 41(5), 658–668. https://doi.org/10.1002/esp.3888.
Madakumbura, G. D., Kim, H., Utsumi, N., Shiogama, H., Fischer, E. M., Seland, Ø., Scinocca, J. F., Mitchell, D. M., Hirabayashi, Y., & Oki, T. (2019). Event-to-event intensification of the hydrologic cycle from 1.5 C to a 2 C warmer world. Scientific Reports, 9(1), 3483. https://doi.org/10.1038/s41598-019-39936-2
Mark, D. M. (1984). Part 4: mathematical, algorithmic and data structure issues: automated detection of drainage networks from digital elevation models. Cartographica: The International Journal for Geographic Information and Geovisualization, 21(2–3), 168–178. https://doi.org/10.3138/10LM-4435-6310-251R.
Mhiret, D. A., Dagnew, D. C., Assefa, T. T., Tilahun, S. A., Zaitchik, B. F., & Steenhuis, T. S. (2019). Erosion hotspot identification in the sub-humid Ethiopian highlands. Ecohydrology & Hydrobiology, 19(1), 146–154. DOI: 10.1016/j.ecohyd.2018.08.004.
Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N., & Halim, A. (2017). Ensemble machine-learning-based geospatial approach for flood risk assessment using multi- sensor remote-sensing data and GIS. 5705(March). https://doi.org/10.1080/19475705.2017.1294113.
Momo, M. R., Pinheiro, A., Severo, D. L., Cuartas, L. A., & Nobre, A. D. (2016). Desempenho do modelo HAND no mapeamento de áreas suscetíveis à inundação usando dados de alta resolução espacial. RBRH, 21, 200–208. https://doi.org/10.21168/rbrh.v21n1.p200-208.
Muin, A., Somae, G., & Rakuasa, H. (2023). Analisis Potensi Genangan Banjir di Kecamatan Siwalalat, Kabupaten Seram Bangian Timur berdasarkan Topographic Wetness Index. ULIL ALBAB: Jurnal Ilmiah Multidisiplin, 2(5), 1800–1806. DOI: 10.56799/jim.v2i5.1502.
Mumbai, G. (2020). frequency ratio and fuzzy gamma operator models in GIS : a case study of Urban flood susceptibility zonation mapping using evidential belief function , frequency ratio and fuzzy gamma operator models in GIS : a case study of Greater Mumbai , Maharashtra ,. Geocarto International, 0(0), 1–26. https://doi.org/10.1080/10106049.2020.1730448.
Nobre, A. D., Cuartas, L. A., Hodnett, M., Rennó, C. D., Rodrigues, G., Silveira, A., & Saleska, S. (2011). Height Above the Nearest Drainage–a hydrologically relevant new terrain model. Journal of Hydrology, 404(1–2), 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051.
Nucifera, F., & Putro, S. T. (2017). Deteksi Kerawanan Banjir Genangan Menggunakan Topographic Wetness Index (TWI). Media Komunikasi Geografi, 18(2), 107–116.
Patel, D. P., Ramirez, J. A., Srivastava, P. K., Bray, M., & Han, D. (2017). Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: a case application of the new HEC-RAS 5. Natural Hazards. https://doi.org/10.1007/s11069-017-2956-6.
Pourali, S. H., Arrowsmith, C., Chrisman, N., Matkan, A. A., & Mitchell, D. (2016). Topography wetness index application in flood-risk-based land use planning. Applied Spatial Analysis and Policy, 9, 39–54. https://doi.org/10.1007/s12061-014-9130-2.
Purwanto, A. (2023). Height Above Nearest Drainage (HAND) as a Model for Rapid Flood Inundation Mapping Based on Remote Sensing and Geographic Information Systems in the Kapuas Sintang Sub Watershed. Jurnal Penelitian Pendidikan IPA, 9(8), 5899–5905. DOI: 10.29303/jppipa.v9i8.3037.
Purwanto, A., Andrasmoro, D., & Eviliyanto, E. (2024). Flood Vulnerability Analysis Based on GIS and Remote Sensing at Silat Hulu. Indonesian Journal of Geography, 56(2). https://doi.org/10.22146/ijg.91114.
Purwanto, A., Rustam, R., Andrasmoro, D., & Eviliyanto, E. (2022). Flood Risk Mapping Using GIS and Multi-Criteria Analysis at Nanga Pinoh West Kalimantan Area. Indonesian Journal of Geography, 54(3). https://doi.org/10.22146/ijg.69879.
Qiu, Z., Lyon, S. W., & Creveling, E. (2020). Defining a topographic index threshold to delineate hydrologically sensitive areas for water resources planning and management. Water Resources Management, 34(11), 3675–3688. DOI: 10.1007/s11269-020-02643-z .
Raduła, M. W., Szymura, T. H., & Szymura, M. (2018). Topographic wetness index explains soil moisture better than bioindication with Ellenberg’s indicator values. Ecological Indicators, 85, 172–179. https://doi.org/10.1016/j.ecolind.2017.10.011.
Rahmati, O., Kornejady, A., Samadi, M., Nobre, A. D., & Melesse, A. M. (2018). Development of an automated GIS tool for reproducing the HAND terrain model. Environmental Modelling & Software, 102, 1–12. https://doi.org/10.1016/j.envsoft.2018.01.004.
Rakuasa, H., Wahab, W. A., Kamiludin, K., Jaelani, A., Ramdhani, R., & Rinaldi, M. (2023). Pemetaan Genangan Banjir di Jalan TB. Simatupang, Jakarta Selatan oleh Unit Pengelola, Penyelidikan, Pengukuran dan Pengujian (UP4) Dinas Sumber Daya Air DKI Jakarta. Jurnal Altifani Penelitian Dan Pengabdian Kepada Masyarakat, 3(2), 288–295. https://doi.org/10.59395/altifani.v3i2.379.
Rennó, C. D., Nobre, A. D., Cuartas, L. A., Soares, J. V., Hodnett, M. G., & Tomasella, J. (2008). HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sensing of Environment, 112(9), 3469–3481. https://doi.org/10.1016/j.rse.2008.03.018
Rhubart, D., & Sun, Y. (2021). The social correlates of flood risk: variation along the US rural–urban continuum. Population and Environment, 43, 232–256. https://doi.org/10.1007/s11111-021-00388-4.
Rimba, A. B., Setiawati, M. D., Sambah, A. B., & Miura, F. (2017). Physical flood vulnerability mapping applying geospatial techniques in Okazaki City, Aichi Prefecture, Japan. Urban Science, 1(1), 7. https://doi.org/10.3390/urbansci1010007.
Sabeh, H., Abdallah, C., Chahinian, N., Tournoud, M.-G., Hdeib, R., & Moussa, R. (2025). Evaluating terrain-based HAND-SRC flood mapping model in low-relief rural plains using high resolution topography and crowdsourced data. Journal of Hydrology, 132649. https://doi.org/10.1016/j.jhydrol.2024.132649.
Saharia, M., Kirstetter, P.-E., Vergara, H., Gourley, J. J., & Hong, Y. (2017). Characterization of floods in the United States. Journal of Hydrology, 548, 524–535. https://doi.org/10.1016/j.jhydrol.2017.03.010
Scriven, B. W. G., McGrath, H., & Stefanakis, E. (2021). GIS derived synthetic rating curves and HAND model to support on-the-fly flood mapping. Natural Hazards, 109, 1629–1653. https://doi.org/10.1007/s11069-021-04892-6.
Shastry, A., & Durand, M. (2019). Utilizing flood inundation observations to obtain floodplain topography in data-scarce regions. Frontiers in Earth Science, 6, 243. https://doi.org/10.3389/feart.2018.00243
Singh, A. P., Arya, A. K., & Singh, D. Sen. (2020). Morphometric analysis of Ghaghara River Basin, India, using SRTM data and GIS. Journal of the Geological Society of India, 95(2), 169–178. https://doi.org/10.1007/s12594-020-1406-3.
Souissi, D., Zouhri, L., Hammami, S., & ... (2020). GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto …. https://doi.org/10.1080/10106049.2019.1566405.
Speckhann, G. A., Chaffe, P. L. B., & ... (2018). Flood hazard mapping in Southern Brazil: a combination of flow frequency analysis and the HAND model. Hydrological …. 10.1080/02626667.2017.1409896.
Tellman, B., Sullivan, J. A., Kuhn, C., Kettner, A. J., Doyle, C. S., Brakenridge, G. R., Erickson, T. A., & Slayback, D. A. (2021). Satellite imaging reveals increased proportion of population exposed to floods. Nature, 596(7870), 80–86. https://doi.org/10.1038/s41586-021-03695-w.
Thalakkottukara, N. T., Thomas, J., Watkins, M. K., Holland, B. C., Oommen, T., & Grover, H. (2024). Suitability of the height above nearest drainage (HAND) model for flood inundation mapping in data-scarce regions: a comparative analysis with hydrodynamic models. Earth Science Informatics, 17(3), 1907–1921. https://doi.org/10.1007/s12145-023-01218-x.
Unnithan, S. L. K., Biswal, B., Rüdiger, C., & Dubey, A. K. (2024). A novel conceptual flood inundation model for large scale data-scarce regions. Environmental Modelling & Software, 171, 105863. https://doi.org/10.1016/j.envsoft.2023.105863.
Wing, O. E. J., Bates, P. D., Sampson, C. C., Smith, A. M., Johnson, K. A., & Erickson, T. A. (2017). Validation of a 30 m resolution flood hazard model of the conterminous U nited S tates. Water Resources Research, 53(9), 7968–7986. https://doi.org/10.1002/2017WR020917.
Winsemius, H. C., Aerts, J. C. J. H., Van Beek, L. P. H., Bierkens, M. F. P., Bouwman, A., Jongman, B., Kwadijk, J. C. J., Ligtvoet, W., Lucas, P. L., & Van Vuuren, D. P. (2016). Global drivers of future river flood risk. Nature Climate Change, 6(4), 381–385. https://doi.org/10.1038/nclimate2893.
Winzeler, H. E., Owens, P. R., Read, Q. D., Libohova, Z., Ashworth, A., & Sauer, T. (2022). Topographic wetness index as a proxy for soil moisture in a hillslope catena: flow algorithms and map generalization. Land, 11(11), 2018. https://doi.org/10.3390/land11112018.
Wondim, Y. K. (2016). Flood hazard and risk assessment using GIS and remote sensing in lower Awash sub-basin, Ethiopia. Journal of Environment and Earth Science, 6(9), 69–86.
Wu, T., Li, J., Li, T., Sivakumar, B., Zhang, G., & Wang, G. (2019). High-efficient extraction of drainage networks from digital elevation models constrained by enhanced flow enforcement from known river maps. Geomorphology, 340, 184–201. https://doi.org/10.1016/j.geomorph.2019.04.022.
Zeleňáková, M., Fijko, R., Labant, S., Weiss, E., Markovič, G., & Weiss, R. (2019). Flood risk modelling of the Slatvinec stream in Kružlov village, Slovakia. Journal of Cleaner Production, 212, 109–118. https://doi.org/10.1016/j.jclepro.2018.12.008.
Zheng, X., Maidment, D. R., Tarboton, D. G., & ... (2018). GeoFlood: Large‐scale flood inundation mapping based on high‐resolution terrain analysis. Water Resources …. https://doi.org/10.1029/2018WR023457. https://doi.org/10.1029/2018WR023457.
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Authors and Indonesian Journal of Geography

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Indonesian Journal of Geography (ISSN 2354-9114 (online), ISSN 0024-9521 (print)) is an international journal published by the Faculty of Geography, Universitas Gadjah Mada in collaboration with The Indonesian Geographers Association. The content of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)






