Landslide Susceptibility Mapping of Menoreh Mountain Using Logistic Regression

Nadia Sekarlangit(1*), Teuku Faisal Fathani(2), Wahyu Wilopo(3)

(1) Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada
(2) Center for Disaster Mitigation and Technological Innovation (GAMA-InaTek) Universitas Gadjah Mada
(3) Department of Geological Engineering, Faculty of Engineering, Universitas Gadjah Mada
(*) Corresponding Author


Menoreh mountain is one of the priority areas developed for tourism and to support sustainable development, it must pay attention to disaster aspects, one of which is landslides. The map published by Center for Volcanology and Geological Hazard Mitigation of Indonesia (PVMBG) has a regional scale, so it is necessary to have a more detailed landslide susceptibility map in the Menoreh Mountains. Identification and evaluation of the landslide conditioning factor were done using logistic regression so that the zonation of the probability of landslide susceptibility can be made. The data was used from field observation conducted at 372 locations including 129 locations where landslides occurred and from a local disaster management agency (BPBD) of 200 landslide locations. Significant landslide conditioning factors include slope, lithology, distance to lineaments, distance to river, and distance to road. The research area is divided into three susceptibility zones classified into low landslide susceptibility zone (0-0.33) covering 39.82%, moderate landslide susceptibility zone (0.34-0.66) covering 25.86%, and high landslide susceptibility zone (0.67-1.00) covering 34.31% of the whole area. Analysis using the logistic regression method has a model prediction accuracy rate of 90.5%, which means that it can predict landslide occurrence in the Menoreh Mountains accurately.


Landslide conditioning factors; landslide prediction; landslide assessment; GIS

Full Text:



Ayalew, L., dan Yamagishi H. (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains. Centre Japan: Geomorphology. v. 65(1–2). pp 15– 31

Badan Nasional Penanggulangan Bencana. (2012) Peraturan Kepala Badan Nasional Penanggulangan Bencana No. 02 Tahun 2012 tentang Pedoman Umum Pengkajian Risiko Bencana. Jakarta: Badan Nasional Penanggulangan Bencana

Bai, S., Wang, J., Lü, G., Zhou, P., Hou, S., dan Xu, S. (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 115 (2010), pp 23–31

Barianto, D.H., Abboud, E., Setijadji, L.D., (2009) Structural Analysis using Landsat TM, Gravity Data, and Paleontological Data from Tertiary Rocks in Yogyakarta, Indonesia; Memoirs of the Faculty of Engineering, Kyushu University, Vol.69, No.2, June 2009.

Barredo, J.I., Benavidesz, A., Herhl, J., dan van Westen, C.J. (2000) Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain: International Journal of Applied Earth Observation and Geoinformation, v. 2(1). pp 9-23

Chau, K. T., dan Chan, J. E. (2005) Regional bias of landslide data in generating susceptibility maps using logistic regression: case of Hongkong Island. Landslides, 2(4), pp 280-290

Dai, F.C., dan Lee, C.F. (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3-4). pp 213-228.

Hosmer, D.W. dan Lemeshow, S. (2000) Applied Logistic Regression, Edisi ke-2. John Wiley and Sons, Inc., New York, 375p

Karnawati, D. (2005) Bencana Alam Gerakan Massa Tanah di Indonesia dan Upaya Penanggulangannya, Jurusan Teknik Geologi Fakultas Teknik Universitas Gadjah Mada, Yogyakarta

Lee, S., (2005) Application of Logistic Regression Model and Its Validation for Landslide Susceptibility Mapping using GIS and Remote Sensing Data, International Journal of Remote Sensing, 26:7, pp 1477-1491

Lee, S., dan Sambath, T. (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50(6), pp. 847-855

Oh, H.J., Park, N.W., Lee, S.S., Lee, S., (2012) Extraction of Landslide-Related Factors from ASTER Imagery and Its Application to Landslide Susceptibility Mapping, International Journal of Remote Sensing, Vol 33, No 10, pp 3211-3231

Pradhan, B., dan Lee, S., (2006) Landslide Hazard Mapping at Selangor, Malaysia Using Frequency Ratio and Logistic Regression Models, Landslide (2007) 4: 33-41 p. Springer-Verlag

Pradhan, B., (2010) Landslide Susceptibility Mapping of a Catchment Area Using Frequency Ratio, Fuzzy Logic, and Multivariate Logistic Regression Approaches, Journal Indian Society Remote Sensing Vol. 38, 301-320 p.

Pulunggono, A., dan Martodjojo, S., (1994) Perubahan Tektonik Paleogen-Neogen Merupakan Peristiwa Tektonik Terpenting di Jawa. Preceedings Geologi dan Geotektonik Pulau Jawa Sejak Akhir Mesozoik Hingga Kuarter, Yogyakarta.

Pusat Vulkanologi dan Mitigasi Bencana Geologi. (2013) Peta Zona Kerentanan Gerakan Tanah Kabupaten Magelang, Provinsi Jawa Tengah, Jakarta, Kementerian Energi dan Sumber Daya Mineral.

Pusat Vulkanologi dan Mitigasi Bencana Geologi. (2013) Peta Zona Kerentanan Gerakan Tanah Kabupaten Purworejo, Provinsi Jawa Tengah, Jakarta, Kementerian Energi dan Sumber Daya Mineral.

Pusat Vulkanologi dan Mitigasi Bencana Geologi. (2013) Peta Zona Kerentanan Gerakan Tanah Kabupaten Kulon Progo, Provinsi Daerah Istimewa Yogyakarta, Jakarta, Kementerian Energi dan Sumber Daya Mineral.

Rahardjo, W, Sukandarrumidi, & Rosidi, H.M.D., (1995) Peta Geologi Lembar Yogyakarta, Skala 1 : 100.000, Bandung, Pusat Penelitian dan Pengembangan Geologi.

Satellite Imaging: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS,

AeroGRID, IGN, and the GIS User Community; Esri, HERE, Garmin, (c) OpenStreetMap Contributors, and the GIS Comunity.

Sekarlangit, N. (2022). Analisis Probabilitas Kerentanan Gerakan Tanah dengan Menggunakan Regresi Logistik, Studi Kasus: Lereng Utara Pegunungan Menoreh. Yogyakarta. Unpublished Thesis. Yogyakarta: Universitas Gadjah Mada, p.153.

Sinarta I. N., Rifa’i, A., Fathani, T. F., Wilopo, W. (2016). Geotechnical Properties and Geologi Age on characteristics of landslide hazards of volcanicsoils in Bali, Indonesia, International Journal of Geomate, 11(26): 2595-2599.

Topographic Map, Indonesian Digital Topographic Map, Badan Infromasi Geospasial,accessed on April 2021.

Widagdo, A., Pramumijoyo, S., Harijoko, A. (2018) Morphotectono-Volcanic of Menoreh-Gajah-Ijo Volcanic Rock in Western Side of Yogyakarta-Indonesia. Journal of Geoscience, Engineering, environment, and Technology, vol 03 no 03, pp 155-163.

Vernes, D.J. (1978) Slope Movement Type and Processes, special Report 176; Landslide; Analysis and Control, Eds: R.L. Schuster dan R.j. Krizek, Transport Research Board, National Research Council, Washington, D.C., pp. 11-33

Vernes, D.J. (1984) Landslide Hazard Zonation: A Review of Principles and Practice 3. UNESCO, Paris. 63 p

Zhu, L., dan Huang J. (2006) GIS-based Logistik Regression for Landslide Susceptibility Mapping in Regional Scale. Journal of Zhejiang University SCIENCE A 7(12), pp. 2007-2017


Article Metrics

Abstract views : 1345 | views : 913


  • There are currently no refbacks.

Copyright (c) 2022 Nadia Sekarlangit, Teuku Faisal Fathani, Wahyu Wilopo

Journal of Applied Geology Indexed by:


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.