Geochemistry of shield stage basalts from Baluran volcano, East Java, Sunda arc

https://doi.org/10.22146/jag.73697

Esti Handini(1*), Toshiaki Hasenaka(2), Nicholas D Barber(3), Tomoyuki Shibata(4), Yasushi Mori(5)

(1) Department of Geological Engineering, Faculty of Engineering, Universitas Gadjah Mada
(2) Center for Water Cycle, Marine Environment, and Disaster Management, Kumamoto University
(3) Department of Earth Sciences, University of Cambridge, Downing St, Cambridge CB23EQ, United Kingdom
(4) Graduate School of Science, Hiroshima University, 1-3-2 Kagamiyama, Higashihiroshima City
(5) Kitakyushu Museum of Natural History and Human History, 2-4-1 Higashida, Yahatahigashi-ku
(*) Corresponding Author

Abstract


We report petrography and geochemistry of basaltic lava flows from the shield stage of Baluran, a Quaternary volcanic center in the rear of East Java, Sunda Arc, Indonesia. These basalts contain abundant plagioclase, clinopyroxene, olivine, and minor magnetite. Geochemically, they resemble other medium-K calc alkaline basalts from eastern Java’s volcanoes, but they are less enriched in light ion lithophile elements (LILE) and Pb. The predicted primary basalt of Baluran lavas can be sourced to a more primitive primary melt composition which may also generate medium-K calc-alkaline magmas in the region. The fractionation trajectory of these primary magmas shows the importance of plagioclase, clinopyroxene, olivine, and magnetite phase removal from the melt. Regardless of the diverse composition of the derivatives, the calculated primary basalts from the eastern Java are all in the field of nepheline-normative. This finding suggests variably small degree of melting of clinopyroxene-rich mantle source is at play in the generation of these magmas. Our result further suggests that the clinopyroxene source rock is possibly present as veins in peridotite mantle which have experienced metasomatism by addition of slab-derived fluids at differing proportion.

Keywords


Baluran; Sunda arc; primary arc basalt; petrogenesis of medium-K calc alkaline

Full Text:

PDF


References

Agustiyanto, D. A., and Santosa, S. (1993) Peta Geologi Lembar Kabupaten Situbondo, Jawa Timur, skala 1:100000. Pusat Penelitian dan Pengembangan Geologi.

Ariskin, A. A., Frenkel, M. Y., Barmina, G. S., and Nielsen, R. I. (1993), COMAGMAT: A FORTRAN program to model magma differentiation processes. Computers & Geosciences, 19(8): 1117–1155.

Badan Informasi Geospasial (2018) DEMNAS: Seamless Digital Elevation Model (DEM) dan Batimetri Nasional. https://tanahair.indonesia.go.id/demnas/#/.

Brooks, C. K. (1976) The Fe2O3/FeO ratio of basaltic analyses: an appeal for a standardized procedure. Bulletin of Geological Society of Denmark., 25: 117-120.

Carn, S. A., and Pyle, D. M. (2001) Petrology and geochemistry of the Lamongan Volcanic Field, East Java, Indonesia: Primitive Sunda Arc magmas in an extensional tectonic setting. Journal of Petrology, 42(9): 1643-1683.

Clements, B., Hall, R., Smyth, H. R., and Cottam, M. A. (2009) Thrusting of a volcanic arc: a new structural model for Java. Petroleum Geoscience, 15: 159-174.

Danyushevsky, L.V., and Plechov, P. (2011) Petrolog3: Integrated software for modelling crystallization processes. Geochemistry, Geophysics, Geosystems, 12(7), Q07021. doi:10.1029/2011GC003516.

De Hoog, J. C. M., Koetsier, G. W., Bronto, S., Sriwana, T. and Van Bergen, J. (2001) Sulfur and chlorine degassing from primitive arc magmas: temporal changes during the 1982-1983 eruptions of 100 Galunggung (West Java, Indonesia). Journal of Volcanology and Geothermal Research, 108: 55-83.

Elburg, M. A., Kamenetsky, V. S., Foden, J. D., and Sobolev, A. (2007) The origin of medium-K ankaramitic arc magmas from Lombok (Sunda arc, Indonesia): Mineral and melt inclusion evidence. Chemical Geology, 240: 260-279.

Falloon, T. J., Danyushevky, L. V., and Green, D. H. (2001) Peridotite melting at 1 GPa: reversal experiments on partial melt compositions produced by peridotite-basalt sandwich experiments. Journal of Petrology, 42: 2363-2390.

Gaetani, G. A., and Grove, T. L. (1998) The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology, 131: 323-346.

Gerbe, M. C., Gourgaud, A., Sigmarsson, O., Harmon, R. S., Joron, J.-L., and Provost, A. (1992) Mineralogical and geochemical evolution of the 1982-1983 Galunggung eruption (Indonesia). Bulletin of Volcanology, 54, 284-298. doi: 10.1007/BF00301483.

Hall, R. (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Science, 20: 353-431.

Handley, H. K., Macpherson, C. G., Davidson, J. P., Berlo, K. and Lowry, D. (2007) Constraining fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen volcanic complex. Journal of Petrology, 48: 1155-1183.

Hayes, G. (2018). Slab2 - A Comprehensive Subduction Zone Geometry Model. U.S. Geological Survey data release, doi:10.5066/F7PV6JNV.

Herzberg, C., and Asimow, P. D. (2015) PRIMELT3 MEGA.XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus. Geochemistry, Geophysics, Geosystems, 16: 563–578. doi:10.1002/2014GC005631.

Imai, N., Terashima, S., Itoh, S., & Ando, A. (1995). 1994 Compilation of analytical data for minor and trace elements in seventeen GSJ geochemical reference samples, “igneous rock series”. Geostandards Newsletter. 19: 135-213.

Irvine, T. N., and Baragar, W. R. (1971) A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8: 523-548.

Jeffery, A. J., Gertisser, R., Troll, V. R., Jolis, E. M., Dahren, B., Harris, C., Tindle, A. G., Preece, K., Driscoll, B., Humaida, H. and Chadwick, J. P. (2013) The pre-eruptive magma plumbing system of the 2007-2008 dome-forming eruption of Kelut volcano, East Java, Indonesia. Contribution to Mineralogy and Petrology, 166: 275-308. doi: 10.1007/s00410-013-0875-4

Kamenetsky, V. S., Eggins, S. M., Crawford, A. J., Green, D. H., Gasparon, M., and Falloon, T. J. (1998) Calcic melt inclusions in primitive olivine at 438N MAR: evidence for melt-rock reaction/ melting involving clinopyroxene-rich lithologies during MORB generation. Earth and Planetary Science Letters, 160: 115-132.

Kelsey, C.H. (1965) Calculation of the CIPW norm. Mineralogical Magazine, 34: 276–282.

Kimura, J. -I., and Ariskin, A. A. (2014) Calculation of water-bearing primary basalt and estimation of source mantle conditions beneath arcs: PRIMACALC2 model for WINDOWS. Geochemistry, Geophysics, Geosystems, 15: 1494–1514. doi:10.1002/2014GC005329.

Kushiro, I. (1996) Partial melting of a fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond. In: Basu, A. & Hart, S. R. (eds) Earth Processes: Reading the Isotopic Code. American Geophysical Union, Geophysical Monograph, 95, 109-122.

Le Maitre, R.W. (1976) Some problems of the projection of chemical data into mineralogical classifications. Contrib. Mineral. Petrol. 56 181–189.

Mori, Y., and Mashima, H. (2005) X-ray fluorescence analysis of major and trace elements in silicate rocks using 1:5 dilution glass beads. Bulletin of Kitakyushu Museum of Natural History and Human History, Series A3, 1-12.

Pearce, J. A. (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe. R. S. (ed.), Andesites. Wiley, Chichester, 00. 525-548.

Rickwood, P.C. (1989) Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4), 247–263. doi:10.1016/0024-4937(89)90028-5

Sarbas, B., and Nohl, U. (2009) The GEOROC database—a decade of online geochemistry. In Geochimica et Cosmochimica Acta Supplement, 73 (13). doi: 10.1016/j.gca.2009.05.015. URL http: //dx.doi.org/10.1016/j.gca.2009.05.015.

Schiano, P., Eiler, J. M., Hutcheon, I. D., and Stolper, E. M. (2000) Primitive CaO-rich, silica-undersaturated melts in island arc: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas. Geochemistry, Geophysics, Geosystems, 1, 1999GC000032.

Shellnutt, J. G., and Pham, T. T. (2018) Mantle potential temperature estimates and primary melt compositions of the low-Ti Emeishan Flood Basalt. Frontiers in Earth Science, 6: 67. doi: 10.3389/feart.2018.00067

Sorbadere, F., Schiano, P., and Métrich, N. (2012) Constraints on the origin of nepheline-normative primitive magmas in island arcs inferred from olivine-hosted melt inclusion compositions. Journal of Petrology, 54(2): 215-233. doi:10.1093/petrology/egs063

Sorbadere, F., Schiano, P., Métrich, N., and Garaebiti, E. (2011) Insights on the origin of primitive silica-undersaturated arc magmas of Aoba volcano (Vanuatu arc). Contributions to Mineralogy and Petrology, s00410-011-0636-1.

Sun, S. S., and McDonough, W. F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geological Society Special Publication, 42: 313-345.

Syracuse, E. M., van Keken, P. E., and Abers, G. A. (2010) The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183: 73-90. doi:10.1016/j.pepi.2010.02.004

Tregoning, P., Brunne, F. K., Bock, Y., Puntodewo, S. S. O., McCaffrey, R., Genrich, J. F., Calais, E., Rais, J., and Subarya, C. (1994). First geodetic measurement of convergence across the Java Trench. Geophysical Research Letters, 21, 2135-2138.

van Bemmelen, R.W. (1949) The geology of Indonesia. The Hague: Government Printing Office, v1, 732 p.

Van Gerven, M., and Pichler, H. (1995) Some aspects of the volcanology and geochemistry of the Tengger Caldera, Java, Indonesia: eruption of a K-rich tholeiitic series. Journal of Southeast Asian Earth Sciences, 11: 125-133.

Widiyantoro, S., and van der Hilst, R. (1996) Structure and evolution of lithospheric slab beneath the Sunda arc, Indonesia. Science, 271: 1566-1570.

Zimmer, M. M., Plank, T., Hauri, E. H., Yogodzinski, G. M., Stelling, P., Larsen, J., Singer, B., Jicha, B., Mandeville, C., and Nye, C. J. (2010) The role of water in generating the calc-alkaline trend: new volcatile data for Aleutian magmas and a new tholeiitic index. Journal of Petrology, 51(12): 2411-2444.



DOI: https://doi.org/10.22146/jag.73697

Article Metrics

Abstract views : 1861 | views : 1275

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Esti Handini, Toshiaki Hasenaka, Nicholas D Barber, Tomoyuki Shibata, Yasushi Mori

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Applied Geology Indexed by:

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.