Pemberian Berbagai Level Air dan Pengaruhnya Pada Pertumbuhan dan Hasil Tanaman Kedelai (Glycine max (L) Merr) Varietas Grobogan

https://doi.org/10.22146/veg.76102

Yusthian Hendra Mahardika(1), Bistok Hasiholan Simanjuntak(2*)

(1) 
(2) UKSW
(*) Corresponding Author

Abstract


Faktor ketersediaan air tanah menjadi faktor pembatas pertumbuhan dan hasil kedelai. Oleh karena itu tujuan penelitian adalah mengetahui pengaruh pemberian berbagai level kadar air tanah terhadap pertumbuhan dan hasil tanaman kedelai varietas Grobogan. Tata letak penelitian dengan Rancangan Acak Kelompok (RAK), terdiri atas 4 perlakuan pemberian air sebanyak kadar air tanah 25% kapasitas lapang (P1), kadar air tanah 50% kapasitas lapang (P2), kadar air tanah 75% kapasitas lapang (P3), kadar air tanah 100% kapasitas lapang (P4). Masing-masing perlakuan diulang 6 kali. Data penelitian terdiri atas prolin daun, stress index (SI), tinggi tanaman, berat kering tanaman, jumlah polong per tanaman dan berat biji per hektar. Data dianalisis dengan Analisis Sidik Ragam dan dilanjutkan dengan Uji Beda Nyata (BNJ) dengan taraf kepercayaan 95%. Pemberian air mempengaruhi produksi prolin, pertumbuhan dan hasil tanaman kedelai varietas Grobogan. Akumulasi prolin dalam tanaman semakin meningkat ketika tingkat cekaman kekurangan air semakin tinggi.  Pemberian air 75% kapasitas lapang mengakibatkan cekaman kekeringan tanaman kelas rendah, sedangkan tinggi tanaman kedelai, bahan kering tanaman, jumlah polong, dan berat gabah tidak berbeda nyata dengan pemberian air 100% kapasitas lapang. Pemberian air 50% kapasitas lapang mengakibatkan cekaman kekeringan tanaman kelas sedang dan secara nyata menurunkan tinggi tanaman. Pemberian air 25% kapasitas lapang mengakibatkan cekaman kekeringan tanaman kelas tinggi dan pada kondisi demikian terjadi penurunan secara nyata pada tinggi tanaman, berat kering tanaman,  jumlah polong dan berat biji per hektar serta terjadi penurunan hasil hingga 69% jika dibandingkan dengan pemberian air 100% kapasitas lapang.


Keywords


air tanah; berat butir; kapasitas lapang; kedelai; prolin

Full Text:

PDF


References

Adie, M. M. 2007. Panduan pengujian individual, kebaruan, keunikan, keseragaman dan kestabilan kedelai. Pusat Perlindungan Varietas Tanaman. Departemen Pertanian Republik Indonesia.

BPS. 2022. Kata Data. Nilai Import Kedelai Indonesia 2021. Badan Pusat Statistik.

Candogan, B. N., M. Sincik, H. Buyukcangaz, C. Demirtas, A. T. Goksoy and S. Yazgan. 2013. Yield, quality and crop water stress index relationships for deficit-irrigated soybean (Glycine max L. Merr.) in sub-humid climatic conditions. Agricultural Water Management 118: 113– 121.

Chun, H.C., S. Lee, Y. D. Choi, D.H. Gong and K. Y. Jung. 2021. Effects of drought stress on root morphology and spatial distribution of soybean and adzuki bean. Journal of Integrative Agriculture. 20(10): 2639–2651.

Cui, Y. S. Ning, J. Jin, S. Jiang, Y. Zhou and C. Wu. 2021. Quantitative Lasting Effects of Drought Stress at a Growth Stage on Soybean Evapotranspiration and Aboveground Biomass. Water 13 (1): 1-19.

Devi, J. M, T. R. Sinclair, P. Chen and T. E. Carter. 2014. Evaluation of elite southern maturity soybean breeding lines for drought-tolerant traits. Agron. J. 106(6): 1947–1954.

Dhungana, S. K, J.H. Park; J. H. Oh, B.K. Kang, J.H. Seo, J. S. Sung, H. K. Kim, S.O Shin, I.Y. Baek and C. S. Jung, 2021. Quantitative Trait Locus Mapping for Drought Tolerance in Soybean Recombinant Inbred Line Population. Plants 10(1816): 1-13.

Dong, S., Y. Jiang, Y. Dong, L. Wang, W. Wang, Z. Ma, C. Yan, C. Ma and L. Liu. 2019. A study on soybean responses to drought stress and rehydration. Saudi Journal of Biological Sciences. 26(8): 2006–2017.

Du, Y., Q. Zhao, S. Li, X. Yao, F. Xie and M. Zhao. 2019. Shoot/root interactions affect soybean photosynthetic traits and yield formation: A case study of grafting with record-yield cultivars. Front. Plant Sci..10. 445

Du, Y., Q. Zhao, L. Chen, X. Yao and F. Xie. 2020. Effect of drought stress at reproductive stages on growth and nitrogen metabolism in soybean. Agronomy 10(302): 1-12.

Gao, X.B., C. Guo, F.M. Li, M. Li and J. He. 2020. High soybean yield and drought adaptation being associated with canopy architecture, water uptake, and root traits. Agronomy. 10(4): 1-11.

Hendrati R.L., D.Rachmawati dan A.C. Pamuji. 2016. Respon kekeringan terhadap pertumbuhan, kadar prolin dan anatomi akar Acacia auriculiformis Cunn, Tectona grandis L, Alstonia spectabilis Br dan Cedrela odorata L. Jurnal Penelitian Kehutanan Wallacea. 5(2): 123-133

Hidayati, N., R.L.Hendrati dan A. Triani. 2017. Pengaruh kekeringan terhadap pertumbuhan dan perkembangan tanaman Nyamplung ( Callophylum inophyllum L.) dan Johar ( Cassia florida Vahl) dari provenan yang berbeda. Jurnal Pemuliaan Tanaman Hutan. 11(2): 99–111.

Ku, Y.S., W.K. Au-Yeung, Y.L. Yung, M.W. Li, C.Q. Wen, X. Liu and H.M. Lam. 2013. Drought stress and tolerance in soybean. In: Board JE (ed). A Comprehensive Survey of International Soybean Research–Genetics, Physiology, Agronomy and Nitrogen Relationships. Intech, New York. http://dx.doi.org/10.5772/52945

Kusvuran, S. 2012. Influence of drought stress on growth, ion accumulation and antioxidative enzymes in okragenotypes. International J.Agric.Biol.14: 401–406.

Le, D.T., R. Nishiyama, Y. Watanabe, M. Tanaka, M. Seki, L.H. Ham, K. Yamaguchi-Shinozaki, K. Shinozaki and L.S.P Tran. 2012. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS One.7(11): e49522.

Liu, F., C.R. Jensen and M.N Andersen. 2004. Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. Field Crops Research. 86: 1–13.

Li, Y. and Nong. 2018. Effects of drought stress on growth, physiological and biochemical characteristics of two sugarcane varieties. Anhui Agric. Sci. Bull. 24 (21): 25-28

Maimunah, G. Rusmayadi, dan B.F. Langai. 2018. Pertumbuhan dan hasil dua varietas tanaman Kedelai (Glycine max. L Merril) dibawah kondisi cekaman kekeringan pada berbagai stadia tumbuh. Enviro Scienteae. 14(3): 211-221

Muzaiyanah, S, H. Pratiwi, A. Taufiq, dan T. Sundari. 2017. Karakter morfologi empat genotipe kedelai pada beberapa level kadar lengas tanah. Prosiding Seminar Hasil Penelitian Tanaman Aneka Kacang dan Umbi 2017. Malang

Nathalie, V. and C. Hermans. 2008. Proline Accumulation in Plants: a review. Article in Amino Acids. Springer-Verlag. http://dx.doi.org/10.1007/s00726-008-0061-6

Oqba, B. and A. Szabo. 2020. Physiology, yield and quality of soybean as affected by drought stress. Asian J Agric & Biol. 8(3): 247-252.

Oktaviani, S. Triyono dan N. Haryono. 2013. Analisis neraca air budidaya tanaman kedelai (Glycine max L. Merr.) pada lahan kering. Jurnal Teknik Pertanian Lampung. 2(1): 7–16.

Lestari, P., R.E. Putri, I.A. Rineksane, E. Handayani, K. Nugroho dan R.T. Terryana. 2021. Keragaman genetik 27 aksesi Kedelai (Glycine max l. Merr.) introduksi subtropis berdasarkan marka SSR. Vegetalika. 10(1): 1–17.

Petrozza, A., A. Santaniello, S. Summerer, G. Di Tommaso, D. Di Tommaso, E. Paparelli, A. Piaggesi, P. Perata and Cellini F. 2014. Physiological responses to Megafol treatments in tomato plants under drought stress: A phenomic and molecular approach. Scientia Horticulturae.174(1): 185–192.

Rahardian, K.I. 2013. Pengaruh Kadar Air Terhadap Pertumbuhan dan Produktivitas Tanaman Kedelai. Skripsi. IPB

Rasheed, A., A. Mahmood, R. Maqbool, M. Albaqami, A. Sher, A. Sattar, G. Bakhsh, M. Nawaz, M. U. Hassan, R. Al-Yahyai, M. Aamer, H. Li and Z. Wu. 2022. Key insights to develop drought-resilient soybean: A review. Journal of King Saud University – Science. 34(5): 1-13.

Rini D.S, B. Budiarjo, I. Gunawan , R.H. Agung and R. Munazar. 2020. Mekanisme respon tanaman terhadap cekaman kekeringan. Berita Biologi. 19(3B). 373-384.

Rusmana, N. E.P and Justika, A. 2020. Growth and yield of various soy varieties (Glycine max L. Merr.) on drought stress. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 8(3): 228–235.

Saibi, W and B. Faical. 2020. Proline, a peculiar amino acid with astucious functions in development and salt tolerance process in plants. Journal of Food Nutrition and Metabolism.3(2): 2-8.

Seleiman, M.F., N. Al-Suhaibani, N. Ali, M. Akmal, M. Alotaibi, Y. Refay, T. Dindaroglu, H. H. Abdul-Wajid and M. L. Battaglia. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10(259): 1-25.

Shaheen, T, Mahmood-ur-Rahman, R. M. Shahid, Y. Zafar and Mehbood-ur-Rahman. 2016. Soybean production and drought stress. Abiotic and Biotic Stresses in Soybean Production. 1: 177–196.

Sincik, M., B. N Candogan, C. Demirtas, H. Buyukcangaz, S. Yazgan and A.T. Goksoy. 2008. Deficit irrigation of soya bean (Glycine max L. Merr) in a sub-humid climate. J. Agron and Crop Sci. 194: 200–205.

Soegijatni, S. dan Suyamto. 2000. Uji daya hasil pendahuluan kedelai toleran kekeringan. Laporan Teknik Hasil Penelitian Balai Penelitian Tanaman Kacang-kacangan dan Umbi umbian. Malang.

Suhartina, P., N. Nugrahaeni dan A. Taufiq. 2014. Stabilitas hasil galur kedelai toleran cekaman kekeringan. Penelitian Pertanian Tanaman Pangan. 33(1): 54-60.

Swastika, D.K.S. 2015. Kinerja produksi dan konsumsi serta prospek pencapaian swasembada kedelai di Indonesia. Forum Penelitian Agro Ekonomi. 33(2): 149–160

Taufiq, A., dan S. Titik. 2012. Respons tanaman kedelai terhadap lingkungan tumbuh. Buletin Palawija.23: 13–26

Vita, S.F. dan B.S. Triono. 2016. Respon karakter fisiologis kedelai (Glycine max L.) verietas Grobogan terhadap cekaman genangan. Jurnal Sains dan Seni ITS. 5(2): 2337-3520.

Wang, L.N., X.Y. Yang, Z.H. Ren and X.F. Wang. 2014. Regulation of photoassimilate distribution between source and sink organs of crops through light environment control in greenhouses. Agricultural Sciences. 5: 250-256.

Wang, N., M. Yuan, H. Chen, Z.Z. Li and M.X. Zhang. 2019. Effects of drought stress and rewatering on growth and physiological characteristics of invasive Aegilops tauschii seedlings. Acta Prataculturae Sinica. 28(1): 70-78.

Wang, X., Z. Wu, Q. Zhou, X. Wang, S. Song and S. Dong. 2022. Physiological response of soybean plants to water deficit. Front. Plant Sci. 12:1-12.

Wang, Y., H. Guo, X. Wu, J. Wang, H. Li and R. Zhang. 2022. Transcriptomic and physiological responses of contrasting maize genotypes to drought stress. Frontiers in Plant Science. 13: 1-14.

Yajun, L., Z. Jiachang, Z. Juan, H. Ling, H. Jinping, D. Liusheng, Z. Mingcai and L. Zhaohu. 2013. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant Biotechnology Journal.11:747–758.

Yehia W.M.B. 2020. Evaluation of some egyptian cotton (Gossypium barbadense l.) genotypes to water stress by using drought tolerance indices. Elixir Agriculture. 143: 54133-54141

Zhao T., A. Muqadas and A.S. Ripa. 2018. Adaptation to water stress in soybean: morphology to genetics. plant, abiotic stress and responses to climate change. Creative Commons Attribution License. 3: 33-68.

Zou, J.N., Q. Yu, X.J. Jin, M.Y. Wang, B. Qin and C.Y. Ren. 2020. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress. Acta Agron. Sin.46: 745–758.



DOI: https://doi.org/10.22146/veg.76102

Article Metrics

Abstract views : 5118 | views : 7777

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Vegetalika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

VEGETALIKA journal indexed by: 

 

       

  

View My Stats