Tinjauan Singularitas Ruang-waktu dalam Teori Relativitas Umum menggunakan Software Maxima

https://doi.org/10.22146/jfi.v22i1.53836

Ibnu Jihad(1*), Devy Pramudyah Wardhani(2), Muhammad Farchani Rosyid(3)

(1) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada
(2) Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Singularitas ruang-waktu pada teori relativitas umum telah ditinjau. Definisi singularitas telah diperjelas menggunakan kriteria singularitas berdasarkan skalar Kretschmann. Letak Daerah singularitas pada tiga jenis ruang-waktu pun telah diketahui berdasarkan perhitungan skalar Kretschmann menggunakan software gratis Maxima yang sangat mempermudah perhitungannya. Tiga jenis ruang-waktu itu adalah ruang-waktu bermetrik Schwarzschild, ruang-waktu bermetrik Reissner-Nordstorm, serta ruang-waktu bermetrik Robertson-Walker dengan model alam semesta Einstein-de Sitter.


Keywords


singularitas ruang-waktu, lubang-hitam, jejari Schwarschild, skalar Kretschmann

Full Text:

PDF


References

  1. Landau, L. D., and Lifshitz, E. M., 1975, The Classical Theory of Fields, Elsevier.
  2. Hawking, S. W., and Ellis, G. F. R., 1973, The Large Scale Structure of Space Time, Cambridge University Press.
  3. Joshi, P. S., 2007, Gravitational Collapse and Spacetime Singularities, Cambridge University Press, Cambridge.
  4. Schwarzschild, K., 1999, On the gravitational field of a mass point according to Einstein’s theory, Gen. Relativ. Gravit., 35 (5), 951–959.
  5. Maxima, a Computer Algebra System. http://maxima.sourceforge.net/,.
  6. Reissner, H., 1916, Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie, Ann. Phys., 355 (9), 106–120.
  7. Weyl, H., 1917, Zur Gravitationstheorie, Ann. Phys., 359 (18), 117–145.
  8. Jeffery, G. B., 1921, The Field of an Electron on Einstein’s Theory of Gravitation, Proc. R. Soc. A Math. Phys. Eng. Sci., 99 (697), 123–134.
  9. Lachièze-Rey, M., and Luminet, J.-P., 1995, Cosmic topology, Phys. Rep., 254 (3), 135–214.
  10. Ellis, G. F. R., and van Elst, H., 1998, Cosmological models (Cargese lectures 1998),.
  11. Einstein, A., and de Sitter, W., 1932, On the Relation between the Expansion and the Mean Density of the Universe, Proc. Natl. Acad. Sci., 18 (3), 213–214.
  12. Penrose, R., 1969, Gravitational Collapse: The Role of General Relativity, .



DOI: https://doi.org/10.22146/jfi.v22i1.53836

Article Metrics

Abstract views : 5824 | views : 5960

Refbacks



Copyright (c) 2020 Ibnu Jihad, Devy Pramudyah Wardhani, Muhammad Farchani Rosyid

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JFI Editorial Office

Departement of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada

Sekip Utara PO BOX BLS 21, 55281, Yogyakarta, Indonesia

Email: jfi.mipa@ugm.ac.id

JFI is indexed by:


Creative Commons License
Jurnal Fisika Indonesia, its website and the articles published are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Social media icon made by Freepik from www.flaticon.com

Social media icon made by Freepik from www.flaticon.com

web
analytics View My Stats