Pengaruh konsumsi cookies garut (Marantha arundinacea) yang mengandung glukomanan porang sebagai makanan selingan terhadap kadar kolesterol total penyandang diabetes mellitus tipe 2

https://doi.org/10.22146/ijcn.67965

Frida Rahmawati(1), Eni Harmayani(2), Vita Yanti Anggraeni(3), Lily Arsanti Lestari(4*)

(1) Departemen Biostatistik, Epidemiologi, dan Kesehatan Populasi, Fakultas Kedokteran, Kesehatan Masyarakat, dan Keperawatan, Universitas Gadjah Mada, Yogyakarta, Indonesia
(2) Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Departemen Kardiologi dan Kedokteran Vaskular, Fakultas Kedokteran, Kesehatan Masyarakat, dan Keperawatan, Universitas Gadjah Mada, Yogyakarta, Indonesia
(4) Departemen Gizi Kesehatan, Fakultas Kedokteran, Kesehatan Masyarakat, dan Keperawatan, Universitas Gadjah Mada, Yogyakarta, Indonesia / Institute for Halal Industry & System, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Effect of consuming arrowroot cookies containing glucomannan porang as a snack on total cholesterol levels of people with type 2 diabetes

Background: People with type 2 diabetes (T2D) have a risk of dyslipidemia, which is an increase in total cholesterol levels. Dietary fiber is known to have health benefits for improving lipid profiles. Arrowroot cookies containing glucomannan porang is a snack with high dietary fiber content.

Objective: This study aims to determine the effect of consuming arrowroot cookies as a snack for 8 weeks on the total cholesterol levels of people with type 2 diabetes.

Methods: This study is a quasi-experimental study with a pre-test post-test design with control group. Subjects are type 2 diabetes patients who are registered in four Yogyakarta City Health Centers. The intervention group was given five arrowroot cookies (65 grams) as a substitute snack for 8 weeks. Arrowroot cookies contain 0.57% soluble fiber and 15.80% insoluble fiber. Fasting total cholesterol levels, nutrient intake, anthropometry, and physical activity were measured twice, at pre- (week 0) and post-intervention (8th week).

Results: The average total cholesterol levels of the control group and intervention group changed with no significant difference between the two study groups. The intervention group experienced a significant increase in total cholesterol levels (p<0.05) from 182.36 mg/dL to 202.55 mg/dL. There were no significant changes in anthropometric and physical activity. There was an increase in fiber intake in both groups but it was not significant for the intervention group (p=0.051).

Conclusion: There was a significant change in the total cholesterol level of people with type 2 diabetes after consuming arrowroot cookies containing glucomannan porang as a snack for 8 weeks.


Keywords


arrowroot cookies; dietary fiber; total cholesterol; type 2 diabetes

Full Text:

PDF


References

  1. Shahab A. Komplikasi kronik DM penyakit jantung koroner. Jakarta: Interna Publishing; 2010.
  2. Simonen P. Cholesterol metabolism in type 2 diabetes [Thesis]. Finlandia: University of Helsinki; 2002.
  3. Fernandez ML, Andersen CJ. Effects of dietary cholesterol in diabetes and cardiovascular disease. Clin Lipidol. 2017;9(6):607–16. doi: 10.2217/clp.14.40
  4. Zhou Q, Wu J, Tang J, Wang J, Lu C, Wang P. Beneficial effect of higher dietary fiber intake on plasma HDL-C and TC/HDL-C ratio among chinese rural-to-urban migrant workers. Int J Environ Res Public Health. 2015;12(5):4726–38. doi: 10.3390/ijerph120504726
  5. Gunness P, Gidley MJ. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 2010;1(2):149–55. doi: 10.1039/c0fo00080a
  6. Wong JMW, Souza R De, Kendall CWC, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40(3):235–43. doi: 10.1097/00004836-200603000-00015
  7. Marsono Y. Indeks glikemik umbi-umbian. Bul Agritech. 2002;22(1):13–6.
  8. Harmayani E, Utami T, Purwandani L. Potensi tepung serat bengkuang (Pachyrhizus erosus) sebagai prebiotik pada Bifidobacterium longum dan Lactobacillus acidophilus. In: Prosiding Seminar Nasional PATPI. Manado: 15-17 September 2011; 2011.
  9. Kumar CHP, Lokesh T, Gobinath M, Kumar B, Saravanan D. Anti-diabetic and anti-hyperlipidemic actavities of glukomannan isolated from Araucaria cunninghamii seeds. J Chem Pharm Sci. 2013;6(3):204–9.
  10. Allen RW, Schwartzman E, Baker WL, Coleman CI, Phung OJ. Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Ann Fam Med. 2013;11(5):452–9. doi: 10.1370/afm.1517
  11. Zare R, Najarzadeh A, Zarshenas MM, Shams M, Heydari M. Efficacy of cinnamon in patients with type II diabetes mellitus: a randomized controlled clinical trial. Clin Nutr. 2019;38(2):549-56. doi: 10.1016/j.clnu.2018.03.003
  12. Paudi F. Kandungan nutrisi gula merah kelapa. [series online] 2012 [cited 2019 Sep 22]. Available from: URL: http://www.ryan-isra.net/kandungan-nutrisi-gula-merah-kelapa/
  13. Srikaeo K, Thongta R. Effects of sugarcane, palm sugar, coconut sugar and sorbitol on starch digestibility and physicochemical properties of wheat based foods. Int Food Res J. 2015;22(3):923–9.
  14. Lestari LA, Gama D, Huriyati E, Prameswari AA, Harmayani E. Glycemic index and glycemic load of arrowroot (Maranta Arundinaceae) cookies withthe addition of cinnamon (Cinnamomum Verum) and porang (Amorphophallus oncophyllus) glucomannan. Food Res. 2020;4(3):866–72. doi: 10.26656/fr.2017.4(3).401
  15. Thathola A, Srivastava S, Singh G. Effect of foxtail millet (Setaria italica) supplementation on serum glucose, serum lipids and glycosylated hemoglobin in type 2 diabetics. Diabetol Croat. 2011;40(1):23–8.
  16. Wahyuningsih R. Penatalaksanaan diet pada pasien. Yogyakarta: Graha Ilmu; 2013.
  17. Perkeni. Konsensus pengelolaan dan pencegahan diabetes melitus tipe 2 di Indonesia 2015. Jakarta: PB Perkeni; 2015.
  18. Ley SH, Hamdy O, Mohan V, Hu FB. Diabetes 1 prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet. 2014;383(9933):1999–2007. doi: 10.1016/s0140-6736(14)60613-9
  19. Sikalidis AK, Kelleher AH, Kristo AS. Mediterranean diet. Encyclopedia. 2021;371–87. doi: 10.3390/encyclopedia1020031
  20. Meslier V, Laiola M, Roager HM, De Filippis F, Roume H, Quinquis B, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut. 2020;69(7):1258–68. doi: 10.1136/gutjnl-2019-320438
  21. Ismaiel M. Dietary fiber role in type 2 diabetes prevention. Br Food J. 2016;118(4):961–75. doi: 10.1108/BFJ-08-2015-0297
  22. Foschia M, Peressini D, Sensidoni A, Brennan CS. The effects of dietary fibre addition on the quality of common cereal products. J Cereal Sci. 2013;58(2):216–27. doi: 10.1016/j.jcs.2013.05.010
  23. Soltanian N, Janghorbani M. Effect of flaxseed or psyllium vs. placebo on management of constipation, weight, glycemia, and lipids: a randomized trial in constipated patients with type 2 diabetes. Clin Nutr ESPEN. 2019;29:41–8. doi: 10.1016/j.clnesp.2018.11.002
  24. Zhong Y, Marungruang N, Fåk F, Nyman M. Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets. Br J Nutr. 2015;113(10):1558–70. doi: 10.1017/S0007114515000793
  25. Li L, Pan M, Pan S, Li W, Zhong Y, Hu J, et al. Effects of insoluble and soluble fibers isolated from barley on blood glucose, serum lipids, liver function and caecal short-chain fatty acids in type 2 diabetic and normal rats. Food Chem Toxicol. 2020;135:110937. doi: 10.1016/j.fct.2019.110937
  26. Surampudi P, Enkhmaa B, Anuurad E, Berglund L. Lipid lowering with soluble dietary fiber. Curr Atheroscler Rep. 2016;18(75). doi: 10.1007/s11883-016-0624-z
  27. Soliman GA. Dietary cholesterol and the lack of evidence in cardiovascular disease. Nutrients. 2018;10(6):780. doi: 10.3390/nu10060780
  28. Larsen N, Vogensen FK, Van Den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085. doi: 10.1371/journal.pone.0009085
  29. Adachi K, Sugiyama T, Yamaguchi Y, Tamura Y, Izawa S, Hijikata Y, et al. Gut microbiota disorders cause type 2 diabetes mellitus and homeostatic disturbances in gutrelated metabolism in Japanese subjects. J Clin Biochem Nutr. 2019;64(3):231–8. doi: 10.3164/jcbn.18-101
  30. Ojo O, Ojo OO, Zand N, Wang X. The effect of dietary fibre on gut microbiota, lipid profile, and inflammatory markers in patients with type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Nutrients. 2021;13(6):1805. doi: 10.3390/nu13061805
  31. Te Morenga LA, Howatson AJ, Jones RM, Mann J. Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am J Clin Nutr. 2014;100(1):65–79. doi: 10.3945/ajcn.113.081521
  32. Wiardani NK, Dewantari NM, Purnami KI, Prasanti PAG. Hubungan asupan lemak dan serat dengan kadar kolesterol pada penderita diabetes melitus tipe 2. Jurnal Ilmu Gizi. 2018;7(2):35–41.
  33. Harman NL, Leeds AR, Griffin BA. Increased dietary cholesterol does not increase plasma low density lipoprotein when accompanied by an energy-restricted diet and weight loss. Eur J Nutr. 2008;47(6):287–93. doi: 10.1007/s00394-008-0730-y
  34. Lin DS, Connor WE. The long term effects of dietary cholesterol upon the plasma lipids, lipoproteins, cholesterol absorption, and the sterol balance in man: the demonstration of feedback inhibition of cholesterol biosynthesis and increased bile acid excretion. J Lipid Res. 1980;21(8):1042–52. doi: 10.1016/S0022-2275(20)34764-7
  35. de la Cruz-Ares S, Gutiérrez-Mariscal FM, Alcalá-Díaz JF, Quintana-Navarro GM, Podadera-Herreros A, Cardelo MP, et al. Quality and quantity of protein intake influence incidence of type 2 diabetes mellitus in coronary heart disease patients: from the cordioprev study. Nutrients. 2021;13(4):1217. doi: 10.3390/nu13041217
  36. Hamad EM, Taha SH, Abou Dawood AGI, Sitohy MZ, Abdel-Hamid M. Protective effect of whey proteins against nonalcoholic fatty liver in rats. Lipids Health Dis. 2011;10:57. doi: 10.1186/1476-511x-10-57
  37. Cannata F, Vadalà G, Russo F, Papalia R, Napoli N, Pozzilli P. Beneficial effects of physical activity in diabetic patients. J Funct Morphol Kinesiol. 2020;5(3):70. doi: 10.3390/jfmk5030070
  38. Barreira E, Novo A, Vaz JA, Pereira AMG. Dietary program and physical activity impact on biochemical markers in patients with type 2 diabetes: a systematic review. Aten Primaria. 2018;50(10):590–610. doi: 10.1016/j.aprim.2017.06.012
  39. Kim YJ, Hwang JY, Kim H, Park S, Kwon O. Diet quality, physical activity, and their association with metabolic syndrome in Korean adults. Nutrition. 2019;59:138–44. doi: 10.1016/j.nut.2018.08.009
  40. Loprinzi PD, Addoh O. The association of physical activity and cholesterol concentrations across different combinations of central adiposity and body mass index. Heal Promot Perspect. 2016;6(3):128–36. doi: 10.15171/hpp.2016.21
  41. Sumarni. Hubungan antara derajat lemak visceral dengan profil lipid pada dewasa obesitas. J Ilm Kedokt. 2019;6(1):45–54.
  42. Simonen PP, Gylling H, Miettinen TA. Body weight modulates cholesterol metabolism in non-insulin dependent type 2 diabetics. Obes Res. 2002;10(5):328–35. doi: 10.1038/oby.2002.46



DOI: https://doi.org/10.22146/ijcn.67965

Article Metrics

Abstract views : 3269 | views : 4840

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Jurnal Gizi Klinik Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Gizi Klinik Indonesia (JGKI) Indexed by:
 
  

  free
web stats View My Stats