Multi Inang Fungi Ektomikoriza pada Dipterocarpaceae di Hutan Tropis

https://doi.org/10.22146/jik.46196

Maliyana Ulfa(1*), Eny Faridah(2), Su See Lee(3), Sumardi Sumardi(4), Christine le Roux4 le Roux(5), Antoine Galiana(6), Patahayah Mansor(7), Marc Ducousso(8)

(1) Fakultas Kehutanan, Universitas Gadjah Mada
(2) Fakultas Kehutanan, Universitas Gadjah Mad
(3) Forest Research Institute of Malaysia (FRIM), Selangor, Kepong, Malaysia
(4) Fakultas Kehutanan, Universitas Gadjah Mada
(5) Laboratoire des symbioses tropicales et méditerranéennes (LSTM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
(6) Laboratoire des symbioses tropicales et méditerranéennes (LSTM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
(7) Forest Research Institute of Malaysia (FRIM), Selangor, Kepong, Malaysia
(8) Laboratoire des symbioses tropicales et méditerranéennes (LSTM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
(*) Corresponding Author

Abstract


Dipterocarpaceae dikenal sebagai keluarga vegetasi hutan dominan di hutan tropis yang memiliki simbiosis mutualisme dengan fungi ektomikoriza. Hal tersebut menjadikan pemulihan hutan tropis bergantung pada keberadaan fungi ektomikoriza. Peranan fungi ektomikoriza dalam mendukung regenerasi dijumpai dalam bentuk multi inang yang dapat terindikasi dari penggunaan secara bersama jenis fungi ektomikoriza antar tanaman. Berdasarkan hal tersebut, penelitian bertujuan untuk mengetahui jenis-jenis fungi ektomikoriza yang berasosiasi dengan dipterocarpaceae di tingkat pohon dan semai, serta mengetahui adanya multi inang fungi ektomikoriza pada kedua tingkat pertumbuhan tersebut. Penelitian ini dilakukan dengan mengidentifikasi ektomikoriza melalui pendekatan molekuler dengan menggunakan teknik Polymerase Chain Reaction (PCR). Urutan ekstrak DNA diperkuat menggunakan pasangan primer spesifik ITS 1F-ITS 4. Identitas fungi ektomikoriza diperoleh dari pencocokan urutan DNA sampel terhadap database Genbank. Berdasarkan hasil identifikasi, jenis-jenis fungi ektomikoriza yang berasosiasi dengan dipterocarpaceae di tingkat pohon dan semai mempunyai hubungan kekerabatan dengan kelas Dothideomycetesdan ordo Sordariales, Sebacinales, Cantharellales, Russulales, Agaricales, Boletales, dan Thelephorales. Penelitian juga menemukan multi inang fungi ektomikoriza terhadap dipterocarpaceae, baik pada jenis maupun tingkatan pertumbuhan inang yang berbeda (semai dan pohon). Jenis fungi ektomikoriza yang paling berperan dalam multi inang adalah fungi yang mempunyai hubungan kekerabatan dengan ordo Thelephorales, Russulales, dan Sebacinales.Tomentella sp. dari ordo Thelephorales ditemukan paling banyak berasosiasi multi inang pada pohon dan semai. R. lepidicolor, Sebacina sp., dan fungi ektomikoriza famili Thelephoraceae masing-masing berasosiasi multi inang di tingkat semai. Keberadaan jenis-jenis fungi ektomikoriza yang mampu berasosiasi secara multi inang dengan dipterocarpaceae merupakan modal alami upaya rehabilitasi hutan tropis terdegradasi.

 

Multi-Host of Ectomycorrhizal Fungi on Dipterocarpaceae inTropical Rain Forests

Abstract

Dipterocarpaceae is known as the dominant forest vegetation family in tropical forests that has mutual symbiosis with ectomycorrhizal fungi. It makes tropical forest resilience depend on the existence of ectomycorrhizal fungi. The role of ectomycorrhizal fungi to support the regeneration was found in multi-host form, indicated by sharing ectomycorrhizal fungal species between plants. Based on that phenomenon, the study aims to recognize ectomycorrhizal fungi that associate with dipterocarpaceae at tree and seedling levels, and the presence of multi-host ectomycorrhizal fungi on both growth stages. The research was conducted by identifying the ectomycorrhizal fungi via molecular approach by using Polymerase Chain Reaction (PCR) technique. To strengthen the sequence of DNA extracts, a specific primer pair of ITS 1F-ITS 4 was used. The identity of the ectomycorrhizal fungi was obtained by matching the samples’DNA sequence to the Genbank database. Based on the identification results, ectomycorrhizal fungi that associate with dipterocarpaceae on tree and seedling levels have genetic relationship with Dothideomycetes class and Sordariales, Sebacinales, Cantharellales, Russulales, Agaricales, Boletales, and Thelephorales orders. The research also found that multi-host of ectomycorrhizal fungi to dipterocarpaceae is formed both in different species and growth stages of host (tree and seedling). The most ectomycorrhizal fungi that play a role in multi-host are those with genetic relationship to the orders of Thelephorales, Russulales, and Sebacinales. Tomentella sp. of Thelephorales order was the most multi-host on both tree and seedling levels. R. lepidicolor, Sebacina sp., and ectomycorrhizal fungi of Thelephoraceae were found multi-host in seedling level. The existence of ectomycorrhizal fungi associated in multi-host with dipterocarpaceae is a natural asset for rehabilitation effort of degraded tropical forests.


Keywords


dipterocarpaceae; DNA; ectomycorrhizal fungi; multi-host; tropical forests

Full Text:

PDF


References

Aponte C, García LV, Marañón T, Gardes M. 2010. Indirect host effect on ectomycorrhizal fungi: Leaf fall and litter quality explain changes in fungal communities on the roots of co-occurring Mediterranean oaks. Soil Biology and Biochemistry 42(5):788–796. https://doi. org/10.1016/j.soilbio.2010.01.014

Ashton PS. 2003. Dipterocarpaceae. Hlm. 182-197 dalam Flowering Plants• Dicotyledons. Springer, Berlin, Hei¬delberg.

Bayman P, Mosquera-Espinosa AT, Saladini-Aponte CM, Hurtado-Guevara NC, Viera-Ruiz NL. 2016. Age-de¬pendent mycorrhizal specificity in an invasive orchid, Oeceoclades maculata. American Journal of Botany 103(11):1880–1889. https://doi.org/10.3732/ajb.1600127

Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM. 2010. Architecture of the wood-wide web: Rhizopogon spp. Genets link multiple Douglas-fir Cohorts. The New Phytologist 185(2):543–553.

Brearley FQ. 2012. Ectomycorrhizal associations of the dip¬terocarpaceae. Biotropica 44(5):637–648. https://doi. org/10.1111/j.1744-7429.2012.00862.x

Brearley FQ, Saner P, Uchida A, Burslem DFRP, Hector A, Nilus R, Egli S. 2016. Plant ecology & diversity testing the importance of a common ectomycorrhizal net¬work for dipterocarp seedling growth and survival in tropical forests of Borneo. Plant Ecology & Diversity, 9(5–6):563–576. https://doi.org/10.1080/17550874.2017 .1283649

Brundrett MC, Bougher N, Dell B, Grove T, Malajczuk N. 1996. Working with mycorrhizas in forestry and agri¬culture. ACIAR Monograhph. The Journal of Biologi¬cal Chemistry 32(June 1982): 374.

Brundrett MC. 2009. Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving con¬flicting information and developing reliable means of diagnosis. Plant and Soil 320(1–2): 37–77. https://doi. org/10.1007/s11104-008-9877-9

Bruns TD, Bidartondo MI, Taylor DL. 2002. Host specific¬ity in ectomycorrhizal communities: what do the ex¬ceptions tell us? Integrative and Comparative Biolo¬gy 42(2) 352-359.

Cao CP, Gailing O, Siregar I, Indrioko S, Finkeldey R. 2006. Genetic variation at AFLPs for the Dipterocar¬paceae and its relation to molecular phylogenies and taxonomic subdivisions. Journal of Plant Research 119(5):553–558. https://doi.org/10.1007/s10265-006- 0005-8

Dickie IA, Cooper JA, Bufford JL, Hulme PE, Bates ST. 2017. Loss of functional diversity and network modularity in introduced plant-fungal symbioses. AoB PLANTS 9(1). ttps://doi.org/10.1093/aobpla/plw084

Diédhiou AG, Selosse MA, Galiana A, Diabaté M, Dreyfus B, Bâ AM, Béna G. 2010. Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Envi¬ronmental Microbiology 12(8), 2219–2232. https://doi. org/10.1111/j.1462-2920.2010.02183.x

Essene AL, Shek KL, Lewis JD, Peay KG, Mcguire KL. 2017. Soil type has a stronger role than dipterocarp host spe¬cies in shaping the ectomycorrhizal fungal commu¬nity in a Bornean lowland tropical rain forest. Fron¬tiers in Plant Science 8: 1–10. https://doi.org/10.3389/ fpls.2017.01828

Fleming LV. 1984. Effects of soil trenching and coring on the formation of ectomycorrhizas on birch seedlings grown around mature trees. New Phytologist 98(1): 143–153.

Glassman SI, Lubetkin KC, Chung JA, Bruns TD. 2017. The theory of island biogeography applies to ectomycor¬rhizal fungi in subalpine tree “islands” at a fine scale. Ecosphere 8(2). https://doi.org/10.1002/ecs2.1677

Hankin SL, Karst J, Landhäusser SM. 2015. Influence of tree species and salvaged soils on the recovery of ectomy¬corrhizal fungi in upland boreal forest restoration af¬ter surface mining. Botany 93(5):267–277. https://doi. org/10.1139/cjb-2014-0132

Indrioko S, Gailing O, Finkeldey R. 2006. Molecular phy¬logeny of Dipterocarpaceae in Indonesia based on chloroplast DNA. Plant Systematics and Evolution 261(1–4):99–115. https://doi.org/10.1007/s00606-006- 0435-8

Ishida TA, Nara K, Hogetsu T. 2007. Host effects on ectomy¬corrhizal fungal communities: Insight from eight host species in mixed conifer-broadleaf forests. New Phy¬tologist 174(2):430–440. https://doi.org/10.1111/j.1469- 8137.2007.02016.x

Jeong H, Lee Y, Eom A, Lee C. 2006. Identification of ec¬tomycorrhizal fungi from Pinus densiflora seedlings at an abandoned coal mining spoils. Journal of Ecol¬ogy and Field Biology 29(2):143–149. https://doi. org/10.5141/JEFB.2006.29.2.143

Kaewgrajang T, Sangwanit U, Kodama M, Yamato M. 2014. Ectomycorrhizal fungal communities of Dipterocar¬pus alatus seedlings introduced by soil inocula from a natural forest and a plantation. Journal of Forest Re¬search 19(2):260–267. https://doi.org/10.1007/s10310- 013-0408-z

Kałucka IL, Jagodziński AM. 2016. Successional traits of ec¬tomycorrhizal fungi in forest reclamation after surface mining and agricultural disturbances: A review. Den¬drobiology 76(C):91–104. https://doi.org/10.12657/ denbio.076.009

Kettle CJ. 2010. Ecological considerations for using diptero¬carps for restoration of lowland rainforest in South¬east Asia. Biodiversity and Conservation 19(4):1137– 1151. https://doi.org/10.1007/s10531-009-9772-6

Lee LS, Alexander IJ, Watling R. 1997. Ectomycorrhizas and putative ectomycorrhizal fungi of Shorea lepro¬sula miq. (Dipterocarpaceae). Mycorrhiza 7(2):63–81. https://doi.org/10.1007/s005720050165

Lee SS, Alexander IJ. 1996. The dynamics of ectomycor¬rhizal infection of Shorea leprosula seedlings in Ma¬laysian rain forests. New Phytologist 132(2): 297–305. https://doi.org/10.1111/j.1469-8137.1996.tb01849.x

Liao H, Chen Y, Vilgalys R. 2016. Metatranscriptomic study of common and host-specific patterns of gene expres¬sion between pines and their symbiotic ectomycorrhi¬zal fungi in the genus Suillus. Plos Genetics 12(10):1– 24. https://doi.org/10.1371/journal.pgen.1006348

Lindahl BD, Tunlid A. 2015. Tansley insight ectomycorrhi¬zal fungi – potential organic matter decomposers , yet not saprotrophs. New Phytologist 205:1443–1447.

Malysheva EF, Malysheva VF, Kovalenko AE, Pimenova EA, Gromyko MN, Voronina EY. 2016. Below-ground ectomycorrhizal community structure in the postfire successional Pinus koraiensis forests in the Central Sikhote-Alin (the Russian Far East). Botanica Pacifica (January). https://doi.org/10.17581/bp.2016.05102

Matsuda Y, Hijii N. 2004. Ectomycorrhizal fungal commu¬nities in an Abies firma forest, with special reference to ectomycorrhizal associations between seedlings and mature trees. Canadian Journal of Botany 82(6):822– 829. https://doi.org/10.1139/b04-065

Murata M, Kinoshita A, Nara K. 2013. Revisiting the host ef¬fect on ectomycorrhizal fungal communities: Implica¬tions from host-fungal associations in relict Pseudot¬suga japonica forests. Mycorrhiza 23(8): 641–653. https://doi.org/10.1007/s00572-013-0504-0

Nara K. 2006a. Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytologist 169(1): 169–178. https://doi.org/10.1111/ j.1469-8137.2005.01545.x

Nara K. 2006b. Pioneer dwarf willow may facilitate tree suc¬cession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional vol¬canic desert. New Phytologist 171: 187–198.

Nara K. 2009. Spores of ectomycorrhizal fungi: ecological strategies for germination and dormancy. New Phytol¬ogist 181(2):243–245.

Paoli GD, Curran L M, Zak DR. 2006. Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: ev¬idence for niche partitioning by tropical rain forest trees. Journal of Ecology 94(1):157–170. https://doi. org/10.1111/j.1365-2745.2005.01077.x

Peay K G, Kennedy PG, Davies SJ, Tan S, Bruns TD. 2010. Po¬tential link between plant and fungal distributions in a dipterocarp rainforest: Community and phylogenet¬ic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. New Phytologist 185(2):529– 542. https://doi.org/10.1111/j.1469-8137.2009.03075.x

Ramanankierana H, Baohanta R, Randriambanona H, Prin Y, Rakotoarimanga N, Baudoin E, Robin D. 2014. Ecto-mycorrhizal fungi on the early colonizing shrub Sar¬colaena oblongifolia F . facilitate the establishment of an endemic tree Uapaca bojeri L . in Madagascarian highland forests. International Jurnal of Ecology and Ecosolution 1(1):1–15.

Redecker D, Szaro TM, Bowman RJ, Bruns TD. 2001. Small genets of Lactarius xanthogalactus, Russula cremori¬color, and Amanita francheti in late‐stage ectomycor¬rhizal successions. Molecular Ecology 10(4):1025–1034.

Roy-Bolduc A, Laliberté E, Hijri M. 2016. High richness of ectomycorrhizal fungi and low host specificity in a coastal sand dune ecosystem revealed by network analysis. Ecology and Evolution 6(1):349–362. https:// doi.org/10.1002/ece3.1881

Roy M, Watthana S, Stier A, Richard F, Vessabutr S, Sel¬osse M-A. 2009. Two mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrhizal fungi. BMC Biology 7:51. https://doi.org/10.1186/1741-7007-7-51

Selosse MA, Richard F, He X, Simard SW. 2006. Mycorrhizal networks: des liaisons dangereuses? Trends in Ecology and Evolution 21(11):621–628. https://doi.org/10.1016/j. tree.2006.07.003

Séne S, Avril R, Chaintreuil C, Geoffroy A, Ndiaye C, Diédhiou AG, Bâ A. 2015. Ectomycorrhizal fungal communities of Coccoloba uvifera (L.) L. mature trees and seedlings in the neotropical coastal forests of Guadeloupe (Lesser Antilles). Mycorrhiza 25(7):547– 559. https://doi.org/10.1007/s00572-015-0633-8

Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP. 2012. Mycorrhizal networks: Mechanisms, ecology and modelling. Fungal Biology Reviews 26(1): 39–60. https://doi.org/10.1016/j.fbr.2012.01.001

Sirikantaramas S, Sugioka N, Lee SS, Mohamed LA, Lee HS, Szmidt AE, Yamazaki T. 2003. Molecular identifi¬cation of ectomycorrhizal fungi associated with Dip¬terocarpaceae. Tropics 13(2):69-77.

Smith ME, Douhan GW, Fremier AK, Rizzo DM. 2009. Are true multihost fungi the exception or the rule ? Dom¬inant ectomycorrhizal fungi on Pinus sabiniana differ from those on co-occurring Quercus Species. New Phytologist 182(2):295–299.

Smith SE, Read D J. 2008. Mycorrhizal symbiosis. 3rd. Aca¬demic Press New York, ISBN, 440026354, 605.

Tamura K, Peterson D, Peterson N, Stecher G, Neil M, Ku¬mar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary dis¬tance, and maximum parsimony methods. Molecular Biology and Evolution 28(10):2731-2739.

Tapwal A, Kumar R, Borah D. 2016. Response of mycorrhi¬zal inoculations on Dipterocarpus retusus seedlings in nursery Response of mycorrhizal inoculations on Dipterocarpus retusus seedlings in nursery. Current Life Sciences 2(1), 1–8.

Taschen E, Sauve M, Taudiere A, Parlade J, Selosse MA, Richard F. 2015. Whose truffle is this? Distribution patterns of ectomycorrhizal fungal diversity in Tuber melanosporum brûlés developed in multi‐host Medi¬terranean plant communities. Environmental Micro¬biology 17(8): 2747–2761. https://doi.org/10.1111/1462- 2920.12741

Tata M. 2008. Mycorrhizae on dipterocarps in rubber agro¬forests (RAF) in Sumatra. University of Utrecht. Re¬trieved from http://igitur-archive.library.uu.nl/dis¬sertations/2008-1203-201249/UUindex.html

Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou S, Wardle DA, Lindahl BD. 2014. Disentangling global soil fun¬gal diversity. Science 346(6213):1052–1053. https://doi. org/10.1126/science.aaa1185

Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U. 2008. Strong host preference of ectomy¬corrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytologist 180(2):479–490. https://doi. org/10.1111/j.1469-8137.2008.02561.x

Tedersoo L, Sadam A, Zambrano M, Valencia R, Bahram M. 2010. Low diversity and high host preference of ecto-mycorrhizal fungi in western Amazonia, a neotropical biodiversity hotspot. The ISME Journal, 4(4): 465–471. https://doi.org/10.1038/ismej.2009.131

Watling R, Lee LS. 1995. Ectomycorrhizal fungi associated with members of the dipterocarpaceae in Peninsular Malaysia-I. Journal of Tropical Forest Science 7(4): 657–669.

Watling R, Lee SS, & Turnbull, E. 2002. Tropical mycology volume 1, Macromycetes: The occurrence and distri¬bution of 3 Putative ectomycorrhizal Basidiomycetes in a Regenerating South-east Asian Rainforest (1st ed.).

Ważny R. 2014. Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in Scots pine forecrops. Annals of Forest Science 71(7), 801–810. https://doi. org/10.1007/s13595-014-0378-0

Wen Z, Murata M Xu Z, Chen Y, Nara. 2014. Ectomycorrhi¬zal fungal communities on the endangered Chinese Douglas-fir (Pseudotsuga sinensis) indicating region¬al fungal sharing overrides host conservatism across geographical regions. Plant and Soil 387(1–2):189–199. https://doi.org/10.1007/s11104-014-2278-3

Yuwa-Amornpitak T, Vichitsoonthonkul T, Tanticharoen M, Cheevadhanarak S, Ratchadawong S. 2006. Diver¬sity of ectomycorrhizal fungi on dipterocarpaceae in Thailand. Journal of Biological Sciences. https://doi. org/10.3923/jbs.2006.1059.1064



DOI: https://doi.org/10.22146/jik.46196

Article Metrics

Abstract views : 323 | views : 167

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Jurnal Ilmu Kehutanan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Redaksi Jurnal Ilmu Kehutanan
Fakultas Kehutanan Universitas Gadjah Mada
Jl. Agro No 1, Bulaksumur, Sleman 55281
Telp. (0274) 512102, 550541, 6491420
Fax. (0274) 550541 E-mail : jik@ugm.ac.id
website : jurnal.ugm.ac.id/jikfkt/

 

Indexed by :

 

Jurnal Ilmu Kehutanan/Journal Forest Science is under the license of Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Creative Commons License

View My Stats