Fire Regime in a Peatland Restoration Area: Lesson from Central Kalimantan
Bekti Larasati(1*), Mamoru Kanzaki(2), Ris Hadi Purwanto(3), Ronggo Sadono(4)
(1) Department of Forest Management, Universitas Gadjah Mada Department of Forest Science and Biomaterials, Kyoto University, Kyoto
(2) Department of Forest Science and Biomaterials, Kyoto University
(3) Department of Forest Management, Universitas Gadjah Mada
(4) Department of Forest Management, Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Peat fires have caused carbon emissions and damage to local and regional communities in Indonesia. An effective fire prevention system is required for mitigating climate change and enabling sustainable development of peatlands. This study examined the fire regime in a peatland restoration area in Central Kalimantan in order to assist the establishment of a fire prevention system. The fire regime was analysed using spatial-temporal analysis, land cover change mapping, and logistic regression analysis. Spatial-temporal analysis was done using monthly Niño 3.4 sea surface temperature anomalies, daily rainfall, and MODIS Active Fire (MCD14DL) hotspots from 2006 to 2015. Land cover change was mapped using Landsat imagery from2014, 2015 and 2016. Logistic regression analysis was conducted to identify significant factors that increase fire risk. The temporal analysis showed that the strongest El Niño occurred in 2015, when the region experienced a 140-days drought period. The highest number of hotspots was also observed in this year, with hotspots concentrated in the latter half of drought period. Moreover, spatial analysis using Kernel Density Estimation (KDE) showed fire recur in degraded areas. The logistic regression analysis used topographic and proximity factors, land cover classes, and soil types as independent variables. It showed that fire in 2014 and 2015 was associated with several land cover classes and was related to historical fire occurrence areas based on KDE results. Several area of peatland forests burned in 2015 and occurred at the forest edge areas located near cultivated or degraded land (e.g. shrubland) and oil palm plantations. Based on the results, the fire regime in the study area is characterized by fires that occurring/recurring in relation to climatic conditions, especially drought periods, and are typically located in cultivated or degraded land cover classes. These parameters should be considered in developing a fire prevention system in the restoration area.
Rezim Kebakaran Hutan dan Lahan di Area Restorasi Lahan Gambut: Studi dari Kalimantan Tengah
Intisari
Kebakaran di lahan gambut menyebabkan emisi karbon dan kerusakan sistem kehidupan masyarakat lokal dan regional. Sistem pencegahan kebakaran yang efektif diperlukan untuk mitigasi perubahan iklim serta mendorong pembangunan lahan dan hutan yang lestari di kawasan gambut. Studi ini meneliti tentang rezim kebakaran hutan dan lahan di suatu kawasan restorasi gambut di Kalimantan Tengah. Rezim kebakaran hutan dan lahan dianalisis menggunakan analisis spasial-temporal, perubahan tutupan lahan, dan regresi logistik. Analisis spasial-temporal menggunakan parameter nilai rata-rata sea surface temperature (SST) bulanan, curah hujan harian, dan hotspot dari MODIS Active Fire (MCD14DL) tahun 2006-2016. Perubahan tutupan lahan dipetakan dengan analisis citra Landsat tahun 2014, 2015 dan 2016. Regresi logistik digunakan untuk menganalisis faktor yang berpengaruh pada peningkatan resiko kebakaran. Analisis temporal terhadap nilai SST tahun 2006-2016 menunjukkan bahwa El- Niño terparah terjadi di tahun 2015 yang memiliki hari tanpa hujan selama 140 hari berturut-turut dan ditemukan titik hotspot terbanyak. Kernel Density Estimation (KDE) digunakan dalam analisis spasial dan hasilnya menunjukkan bahwa kebakaran terjadi dan dapat berulang di area terdegradasi. Regresi logistik menggunakan parameter yang terdiri faktor topografis, kedekatan dengan sungai/kanal, tipe penutupan lahan, serta jenis tanah. Hasil analisis menunjukkan bahwa kebarakan tahun 2014 dan 2015 berhubungan dengan beberapa tipe tutupan lahan di area yang secara historis pernah terbakar berdasarkan analisis KDE, sehingga area tersebut terindikasi telah terdegradasi sebelumnya. Beberapa area hutan di lahan gambut juga mengalami kebakaran pada tahun 2015 khususnya di area tepi hutannya. Berdasarkan hasil, rezim kebakaran di area studi dapat dijelaskan bahwa kebakaran terjadi dan dapat berulang karena pengaruh iklim.
Keywords
Full Text:
PDFReferences
Albar I, Jaya IS, Saharjo BH, Kuncahyo B, Vadrevu KP. 2018. Spatio-Temporal Analysis of Land and Forest Fires in Indonesia Using MODIS Active Fire Dataset. Page 105-127. In Vadrevu K, Ohara T, Justice C, editor. Land-Atmospheric Research Applications in South and Southeast Asia. Springer, Cham.
Asgary A, Ghaffari A, Levy J. 2010. Spatial and temporal analyses of structural fire incidents and their causes: A case of Toronto, Canada. Fire Safety Journal 45: 44–57.
Beven K & Kirkby M. 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Journal 24(1): 43–69.
Chung CF, Fabbri AG. 2003. Validation of Spatial Prediction Models for Landslide Hazard Mapping. Natural Hazards 30: 451–472.
Cochrane M A. 2003. Fire science for rainforests. Nature 421: 913–919.
Congalton RG, Oderwald RG, Mead RA. 1983. Assessing Landsat classification accuracy using discrete multivariate statistical techniques. Remote Sensing 49: 1671-1678.
Erkel AR, Pattynama PM. 1998. Receiver operating characteristic (ROC) analysis: Basic principles andapplications in radiology. European Journal of Radiology 27:88–94.
Field RD, van der Werf GR, Fanin T, Fetzer EJ, Fuller R, Jethva H, Levy R, Livesey NJ, Luo M, Torres O, Worden HM. 2016. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Nino-induced drought. PNAS 113(33): 9204-9209.
Gao Y, Pontius Jr RG, Giner NM, Kohyama TS, Osaki M, Hirose K. 2016. Land change analysis from 2000-2004 in peatland of central Kalimantan, Indonesia using GIS and an extended transition matrix. Page 433-443. In Osaki M, Tsuji N, editors. Tropical Peatland Ecosystems. Springer, Tokyo.
Giglio L. 2005. MODIS collection 4 active fire product user’s guide: Version 2.2. Science Systems and Applications, Inc.
Giglio L. 2010. MODIS collection 5 active fire product user’s guide: Version 2.4. Department of Geography, University of Maryland, College Park.
Hayasaka H, Takahashi H, Limin SH, Yulianti N, Usup A. 2016. Peat Fire Occurrence. Page 377-395. In Osaki M, Tsuji N, editors. Tropical Peatland Ecosystems. Springer, Tokyo.
Hirano T, Segah H, Kusin K, Limin S, Takahashi H, Osaki M. 2012. Effects of disturbances on the carbon balance of tropical peat swamp forests. Global Change Biology 18: 3410-3422.
Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wosten H, Jauhiainen J. 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7: 1505-1514.
Huat BBK, Kazemian S, Prasad A, Barghchi M. 2011. State of an art review of peat: general perspective. International Journal of the Physical Sciences 6 (8): 1988-1996.
Huijnen V, Wooster MJ, Kaiser JW, Gaveau DLA, Flemming J, Parrington M, Inness A, Murdiyarso D, Main B, van Weele M. 2016. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Scientific Reports 6.
Jaenicke J, Rieley JO, Mott C, Kimman P, Siegert F. 2008. Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 147: 151-158.
Jaenicke J, Wösten H, Budiman A, Siegert F. 2010. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitigation and Adaptation Strategies for Global Change 15: p 223–239.
Jensen JR. 1996. Introductory Digital Image Processing: A Remote Sensing Perspective. 2nd Edition. Prentice Hall, Inc., Upper Saddle River.
Joosten H, Clarke D. 2002. International Mire Conservation Group and International Peat Society Wise use of mires and peatlands – Background and Principles including A Framework for Decision-Making, Saarijärvi.
Keddy PA, Fraser LH, Solomeshch AI, Junk WJ, Campbell DR, Arroyo MTK, Alho CJR. 2009. Wet and wonderful: the world’s largest wetlands are conservation priorities. BioScience 59 (1).
Kleinbaum DG, Klein M. 2010. Logistic Regression A Self‐Learning Text Third Edition. Springer-Verlag, New York.
Krebs P, Pezzatti GB, Mazzoleni S, Talbot LM, Conedera M. 2010. Fire regime: history and definition of a key concept in disturbance ecology. Theory in Biosciences 129 (1): 53-69.
Langner A, Miettinen J, Siegert F. 2007. Land cover change 2002-2005 in Borneo and the role of fire derived from MODIS imagery. Global Change Biology 13: 2329–2340.
Langner A, Siegert F. 2009. Spatiotemporal fire occurrence in Borneo over a period of 10 years. Global Change Biology 15: 48–62.
Lillesand TM, Kiefer RW, Chipman JW. 2015. Remote sensing and image interpretation – Seventh Edition. John Wiley & Sons, Inc., New York.
Lozano FJ, Seoane SS, de Luis E. 2007. Assessment of several spectral indices derived from multi-temporal Landsat data for fire occurrence probability modelling. Remote Sensing of Environment 107 (4): 533-544.
Manzo-Delgado L, Aguirre-Gόmez R, Alvarez R. 2004. Multitemporal analysis of land surface temperature using NOAA-AVHRR: preliminary relationships between climatic anomalies and forest fires. International Journal of Remote Sensing 25 (20): 4417 - 4424.
Miettinen J, Liew SC. 2010. Status of Peatland Degradation and Development in Sumatra and Kalimantan. AMBIO 39: 394-401.
Mohammadi F, Bavaghar MP, Shabanian N. 2014. Forest fire risk zone modeling using logistic regression and GIS: An Iranian case study. Small-scale Forestry 13: 117–125.
Mukti A, Prasetyo LB, Rushayati SB. 2016. Mapping of fire vulnerability in Alas Purwo National Park. Procedia Environmental Sciences 33: 290 – 304.
Osaki M, Hirose K, Segah H, Helmy F. 2016. Tropical peat and peatland definition in Indonesia. Page 137-147. In Osaki M, Tsuji N, editors. Tropical Peatland Ecosystems. Springer, Tokyo.
Page SE, Siegert F, Rieley JO, Boehm HDV, Jaya A, Limin S. 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420: p 61–65.
Page SE, Hooijer A. 2016. In the line of fire: the peatlands of Southeast Asia. Philosophical Transsactions B 371: 20150176.
Park S, Goo JM, Jo CH. 2004. Receiver Operating Characteristic (ROC) Curve: Practical Review for Radiologists. Korean Journal of Radiology 5: 11-18.
Prasetyo LB, Dharmawan AH, Nasdian FT, Ramdhoni S. 2016. Historical forest fire occurrence analysis in Jambi Province during the period of 2000-2015: Its Distribution & Land Cover Trajectories. Procedia Environmental Sciences 2016 33; 450-459.
Putra EI, Hayasaka H. 2011. The effect of the precipitation pattern of the dry season on peat fire occurrence in the Mega Rice Project area, Central Kalimantan, Indonesia. TROPICS 19 (4): 145-156.
Qin CZ, Zhu AX, Pei T, Li BL, Scholten T, Behrens T, Zhou CH. 2011. An approach to computing topographic wetness index based on maximum downslope gradient. Precision Agriculture 12(1): 32–43.
Rieley J, Page S. 2016. Tropical Peatland of the World. Page 3-32. In Osaki M, Tsuji N, editors. Tropical Peatland Ecosystems. Springer, Tokyo.
Ritung S, Kusumo N, Himatullah, Suparto, Tafakresnanto. 2011. Peta Lahan Gambut Indonesia Skala 1:250.000. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Bogor.
Shimada S, Takahashi H, Osaki M. 2016. Carbon Stock Estimate. Page 353-365. In Osaki M, Tsuji N, editors. Tropical Peatland Ecosystems. Springer, Tokyo.
Shimamura, T. 2016. An overview of tropical peat swamps. In Mizuno K, Fujita MS, Kawai S, editors. Catastrophe & Regeneration in Indonesia’s Peatlands: Ecology, Economy, & Society. Kyoto University Press, Kyoto.
Siljander M. 2009. Predictive fire occurrence modelling to improve burned area estimation at a regional scale: A case study in East Caprivi, Namibia. International Journal of Applied Earth Observation and Geoinformation 11(6): 380-393.
Siegert F, Ruecker G, Hinrichs A, Hoffmann AA. 2001. Increased damage from fires in logged forests during droughts caused by El Niño. Nature 412: 437–440.
Soil Survey Staff. 2014. Keys to Soil Taxonomy. 12th ed. USDA National Resources Conservation Services, Washington DC.
Soraya E, Wardhana W, Sadono R. 2016. Pemodelan spasial resiliensi ekosistem Gunungapi Merapi pasca erupsi. Jurnal Ilmu Kehutanan 10 (2): 86-97.
Sorensen R, Zinko U, Seibert J. 2006. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences Discussions 10(1): 101–112.
Story M, Congalton R. 1986. Accuracy assessment: a user’s prespective. Remote Sensing 52: 397-399.
Takahata C, Amin R, Sarma P, Banerjee G, Oliver W, Fa JE. 2010. Remotely-sensed active fire data for protected area Management: eight-year patterns in the Manas National Park, India. Environmental Management 45: 414–423.
Takayama T, Ohki T, Sekine H, Ohnishi S, Shiodera S, Evri M, Osaki M. 2013. Application of hyperspectral data for assessing peatland forest condition with spectral and texture classification. Geoscience and Remote Sensing Symposium (IGARSS), IEEE International: 1007-1010.
Tansey K, Beston J, Hoscilo A, Page SE, Hernandez CP. 2008. Relationship between MODIS fire hot spot count and burned area in a degraded tropical peat swamp forest in Central Kalimantan, Indonesia. Journal of Geophysical Research 113: D23112.
Thoha AS, Saharjo BH, Boer R, Ardiansyah M. 2014. Spatiotemporal distribution of peatland fires in Kapuas District, Central Kalimantan Province, Indonesia. Agriculture, Forestry and Fisheries 3(3): 163-170.
Trenberth KE. 1997. The definition of El Niño. Bulletin of the American Meteorological Society: 2771-2777.
Trenberth KE, Stepaniak DP. 2001. Indices of El Nino Evolution. Journal of Climate 14: 1697-1701.
Usman M, Sitanggang IS, Syaufina L. 2015. Hotspot distribution analyses based on peat characteristics using density-based spatial clustering. Procedia Environmental Sciences 24: 132 – 140.
Vanagas G. 2004. Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems. Interactive Cardiovascular and Thoracic Surgery 3: 319–322.
Wahyunto, Dariah A. 2014. Degradasi Lahan di Indonesia: Kondisi Existing, Karakteristik, dan Penyeragaman Definisi Mendukung Gerakan Menuju Satu Peta. Jurnal Sumberdaya Lahan 8 (2): 81-93.
Yulianti N, Hayasaka H, Usup A. 2012. Recent forest and peat fire trends in Indonesia the latest decade by MODIS hotspot data. Global Environmental Research 16(1): 105-116.
Yulianti N, Hayasaka H. 2013. Recent active fires under el niño conditions in Kalimantan, Indonesia. American Journal of Plant Sciences 4: 685-696.
DOI: https://doi.org/10.22146/jik.52436
Article Metrics
Abstract views : 4579 | views : 3147Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Jurnal Ilmu Kehutanan
License URL: https://creativecommons.org/licenses/by-nc-sa/4.0/
© Editorial Board Jurnal Ilmu Kehutanan
Faculty of Forestry, Universitas Gadjah Mada
Building D 2nd floor
Jl. Agro No 1, Bulaksumur, Sleman 55281
Phone. +62-274-512102, +62-274-550541, +62-274-6491420
Fax. +62-274-550541 E-mail : jik@ugm.ac.id
former website : jurnal.ugm.ac.id/jikfkt/
new website : jurnal.ugm.ac.id/v3/jik/
Indexed by:
Jurnal Ilmu Kehutanan is under the license of Creative Commons Attribution-ShareAlike 4.0 International