Induced Resistance Mechanism of Twisted Disease Suppression of Shallot by Bacillus spp.
Elfrida Indriani Reno Wulan(1), Arif Wibowo(2*), Tri Joko(3), Ani Widiastuti(4)
(1) Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada Jln. Flora No. 1, Bulaksumur, Sleman, Yogyakarta 55281 Indonesia
(2) Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada Jln. Flora No. 1, Bulaksumur, Sleman, Yogyakarta 55281 Indonesia
(3) Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada Jln. Flora No. 1, Bulaksumur, Sleman, Yogyakarta 55281 Indonesia
(4) Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada Jln. Flora No. 1, Bulaksumur, Sleman, Yogyakarta 55281 Indonesia
(*) Corresponding Author
Abstract
Plant Growth Promoting Rhizobacteria has been known for its ability to induce plant resistance on shallot against twisted disease. Its ability as a bioprotectant agent is estimated to be comparable to the efficacy of Trichoderma which is currently widely used as a biological control agent.. This study aims to determine the content of jasmonic acid, salicylic acid, peroxidase, and disease suppression in shallot by application of Bacillus velezensis B-27, Bacillus cereus RC76, and application with combination of both rhizobacteria. The application was carried out with tuber dipping for 30 minutes in each treatment with a bacterial density of 108 CFU mL-1. Application using Trichoderma was used as the comparison treatment, and the control plot was not given any treatment. Pathogen inoculation was carried out simultaneously as planting using Fusarium acutatum with a spore density of 106 CFU mL-1. The jasmonic and salicylic acids content was measured using the High-Performance Liquid Chromatography method, and the peroxidase content was determined using the spectrophotometric method. Disease suppression was measured at 10-day intervals. The results showed that treatment with Bacillus cereus RC76 increased jasmonic and salicylic acid levels, while application with Bacillus velezensis B-27 showed the highest level of peroxidase. Treatments with Bacillus spp. were able to suppress twisted disease by 72.2% to 100%. This study demonstrated that application Bacillus spp. suppressed twisted disease on shallot and increased the jasmonic and salicylic acid content as induced resistance mechanism against pathogens.
Keywords
Full Text:
PDFReferences
Abdel-Kader, M.M., El-Mougy, N.S., & Khlil, M.S.A. (2019). First Record of Black Spot Disease Infecting Guava Fruit in Egypt and Its Pre and Post-Harvest Management. Bioscience Research, 16(2), 2104–2118. Retrieved from URL
Al-Baarri, A.N. (2016). Peroksidase Daun Tomat dan Aplikasinya untuk Antibakteri. Semarang, Indonesia: Indonesian Food Technologists.
Campbell, C.L., & Madden, L.V. (1990). Introduction of Plant Disease Epidemiology. New York, United States: John Wiley and Sons.
Chang, W-T., Chen, C-S., & Wang, S-L. (2003). An Antifungal Chitinase Produced by Bacillus cereus with Shrimp and Crab Shell Powder as a Carbon Source. Current Microbiology, 47(2), 102–108. DOI
Chen, L., Wang, X., Ma, Q., Bian, L., Liu, X., Xu, Y., Zhang, H., Shao, J., & Liu, Y. (2020). Bacillus velezensis CLA178-Induced Systemic Resistance of Rosa multiflora against Crown Gall Disease. Frontiers in Microbiology, 11, 587667. DOI
Choudhary, D.K., Prakash, A., & Johri, B.N. (2007). Induced Systemic Resistance (ISR) in Plants: Mechanism of Action. Indian Journal of Microbiology, 47(4), 289–297. DOI
Dwimartina, F., Arwiyanto, T., & Joko, T. (2017). Potential of Endophytic and Rhizobacteria as an Effective Biocontrol for Ralstonia syzgii subsp. syzgii. Asian Journal of Plant Pathology, 11(4), 191–198. DOI
Hersanti, Sudarjat, & Damayanti, A. (2019). Kemampuan Bacillus subtilis dan Lysinibacillus sp. dalam Silika Nano dan Serat Karbon untuk Menginduksi Ketahanan Bawang Merah terhadap Penyakit Bercak Ungu (Alternaria porri (Ell.) Cif) [The Ability of Bacillus subtilis and Lysinibacillus sp. Singly or Mixed, with Carbon Fiber and Nano Silica to Induce Resitance of Shallot to Purple Blotch]. Jurnal Agrikultura, 30(1), 8–16. DOI
Joko, T., Koentjoro, M.P., Somowiyarjo, S., Rohman, M.S., Liana, A., & Ogawa, N. (2012). Response of Rhizobacterial Communities in Watermelon to Infection with Cucumber green mottle mosaic virus as Revealed by Cultivation-Dependent RISA. Archives of Phytopathology and Plant Protection, 45(15), 1810–1818. DOI
Jumadi, O., Junda, M., Caronge, M.W., & Syafruddin (Eds.). (2021). Trichoderma dan Pemanfaatan. Makassar, Indonesia; Jurusan Biologi FMIPA UNM. Retrieved from URL
Khan, M. S., Gao, J., Chen, X., Zhang, M., Yang, F., Du, Y., Moe, T. S., Munir, I., Xue, J., & Zhang, X. (2020). The Endophytic Bacteria Bacillus velezensis Lie-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant-Growth Promoting Effects. Journal of Microbiology and Biotechnology, 30(5), 668–680. DOI
Korlina, E. & Baswarsiati. (1995). Uji Ketahanan Beberapa Kultivar Bawang Merah terhadap Masa Inkubasi dan Intensitas Penyakit Layu Fusarium. In Prosiding Kongres Nasional XIII dan Seminar Ilmiah Perhimpunan Fitopatologi Indonesia (pp. 535–539). Mataram, Indonesia: Perhimpunan Fitopatologi Indonesia.
Lestiyani, A., Wibowo, A., & Subandiyah, S. (2021). Pathogenicity and Detection of Phytohormone (Gibberellic Acid and Indole Acetic Acid) Produced by Fusarium spp. that Causes Twisted Disease in Shallot. JPT: Jurnal Proteksi Tanaman (Journal of Plant Protection), 5(1), 24–33. DOI
Milati, L.N., Nuryanto, B., & Sumarlin, U. (2021). Hubungan Insidensi Penyakit Hawar Pelepah dengan Keparahan Penyakit dan Hasil Produksi Padi [The Relationship between Sheath Blight Disease Incidence, Disease Severity, and Rice Yield]. Jurnal Fitopatologi Indonesia, 17(3), 113–120. DOI
Niu, D-D., Liu, H-X., Jiang, C-H., Wang, Y-P., Wang, Q-Y., Jin, H-L., & Guo, J-H. (2011). The Plant Growth-Promoting Rhizobacterium Bacillus cereus AR156 Induces Systemic Resistance in Arabidopsis thaliana by Simultaneously Activating Salicylate- and Jasmonate/Ethylene-Dependent Signaling Pathways. Molecular Plant-Microbe Interactions®, 24(5), 533–542. DOI
Niu, D-D., Wang, C-J., Guo, Y-H., Jiang, C-H., Zhang, W-Z., Wang, Y-P., & Guo, J-H. (2012). The Plant Growth-Promoting Rhizobacterium Bacillus cereus AR156 Induces Resistance in Tomato with Induction and Priming of Defence Response. Biocontrol Science and Technology, 22(9), 991–1004. DOI
Nugroho, A.W., Hadiwiyono, & Sudadi. (2015). Potensi Jamur Perakaran sebagai Agens Pengendalian Hayati Penyakit Moler (Fusarium oxysporum f.sp. cepae) pada Bawang Merah [Potential of Root-Colonizing Fungi as Biocontrol Agent of Moler Disease (Fusarium oxysporum f.sp. cepae) on Shallot]. Agrosains: Jurnal Penelitian Agronomi, 17(1), 4-8. DOI
Rahma, A.A., Suryanti, Somowiyarjo, S., & Joko, T. (2020). Induced Disease Resistance and Promotion of Shallot Growth by Bacillus velezensis B-27. Pakistan Journal of Biological Sciences, 23(9), 1113–1121. DOI
Resti, Z., Reflin, & Gani, S. (2017). Antagonistic and Plant Growth Promoting Potentials of Indigenous Endophtyic Bacteria of Shallots. International Journal of Science and Applied Technology, 2(2), 42–49. DOI
Romera, F.J., García, M.J., Lucena, C., Martines-Medina, A., Aparicio, M.A., Ramos, J., Alcántara, E., Angulo, M., & Pérez-Vicente, R. (2019). Induced Systemic Resistance (ISR) and Fe Deficiency Responses in Dicot Plants. Frontiers in Plant Science, 10, 287. DOI
Sukma, D., Poerwanto, R., Sudarsono, R., Khumaida, N., Artika, I. M., & Wiyono, S. (2012). Aktivitas Kitinase dan Peroksidase dari Ekstrak Kasar Protein Asal Kalus dan Berbagai Jaringan Tanaman Trichosanthes cucumerina var. anguina [Chitinase and Peroxydase Activities of Crude Protein Extracts from Callus and Trichosanthes cucumerina var. anguina]. Jurnal Agronomi Indonesia, 40(3), 225–231. Retrieved from URL
Suswati, Indrawaty, A., & Friardi. (2015). Aktivitas Enzim Peroksidase Pisang Kepok dengan Aplikasi Glomus Tipe 1 [Ripe Banana Peroxidase Activities with Glomus Type 1]. Jurnal Hama dan Penyakit Tumbuhan Tropika, 15(2), 141–151. DOI
Taufik, M., Rahman, A., Wahab, A., & Hidayat, S.H. (2010). Mekanisme Ketahanan Terinduksi oleh Plant Growth Promoting Rhizobacteria (PGPR) pada Tanaman Cabai Terinfeksi Cucumber Mosaik Virus (CMV) [Induced Resistant Mechanism by Plant Growth Promoting Rhizobacteria (PGPR) on Pepper Plants Infected by Cucumber Mosaic Virus (CMV)]. Jurnal Hortikultura, 20(3), 274–283. Retrieved from URL
Tenhaken, R., & Rubel, C. (1997). Salicylic Acid Is Needed in Hypersensitive Cell Death in Soybean but Does Not Act as a Catalase Inhibitor. Plant Physiology, 115(1), 291–298. DOI
Tuhuteru, S., Sulistyaningsih, E., & Wibowo, A. (2018). Responses Growth and Yield of Three Shallot Cultivars in Sandy Coastal Land with PGPR (Plant Growth Promoting Rhizobacteria). International Journal on Advanced Science Engineering Information Technology, 8(3), 849–855.
Tuhuteru, S., Sulistyaningsih, E. & Wibowo, A. (2019). Aplikasi Plant Growth Promoting Rhizobacteria dalam Meningkatkan Produktivitas Bawang Merah di Lahan Pasir Pantai [The Application of Plant Growth Promoting Rhizobacteria to Improve Shallot Productivity on Sandy Coastal Land]. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 47(1), 53–60. DOI
Ullah, A., Akbar, A., & Yang, X. (2019). Jasmonic Acid (JA)-Mediated Signaling in Leaf Senescence. In M. Sarwat, & N. Tuteja (Eds.), Senescence Signalling and Control in Plants (pp. 111–123). United States: Academic Press. DOI
Vellosilo, T., Vicente, J., Kulasekaran, S., Hamberg, M., & Castresana, C. (2010). Emerging Complexity in Reactive Oxygen Species Production and Signaling during the Response of Plants to Pathogens. Plant Physiology, 154(2), 444–448. Retrieved from URL
Vicente, M.R., & Plasencia, J. (2011). Salicylic Acid Beyond Defence: Its Role in Plant Growth and Development. Journal of Experimental Botany, 62(10), 3321‒3338. DOI
Wang, C., Zhao, D., Qi, G., Mao, Z., Hu, X., Du, B., Liu, K., & Ding, Y. (2020). Effects of Bacillus velezensis FKM10 for Promoting the Growth of Malus hupehensis Rehd. and Inhibiting Fusarium verticillioides. Frontiers in Microbiology, 10, 2889. DOI
Wang, L-T., Lee, F-L., Tai, C-J., & Kuo, H-P. (2008). Bacillus velezensis is a Later Heterotypic Synonym of Bacillus amyloliquefaciens. International Journal of Systematic and Evolutionary Microbiology, 58(3), 671–675. DOI
Wijoyo, R.B., Sulistyaningsih, E., & Wibowo, A. (2020). Growth, Yield and Resistance of Three Cultivars on True Seed Shallots to Twisted Disease with Salicylic Acid Application. Caraka Tani: Journal of Sustainable Agriculture, 35(1), 1–11. DOI
Wiyatiningsih, S., Wibowo, A., & Triwahyu, E. (2009). Tanggapan Tujuh Kultivar Bawang Merah terhadap Infeksi Fusarium oxysporum f.sp. cepae Penyebab Penyakit Moler. Jurnal Pertanian MAPETA, 12(1), 7–13. Retrieved from URL
Wu, Q., Sun, R., Ni, M., Yu, J., Li, Y., Yu, C., Dou, K., Ren, J., & Chen, J. (2017). Identification of a Novel Fungus, Trichoderma asperellum GDFS1009, and Comprehensive Evaluation of Its Biocontrol Efficacy. PLoS ONE, 12(6), e0179957. DOI
Yang, L., Xi, Y., Luo, X., Ni, H., & Li, H. (2019). Preparation of Peroxidase and Phenolics Using Discarded Sweet Potato Old Stems. Scientific Reports, 9, 3769. DOI
DOI: https://doi.org/10.22146/jpti.73198
Article Metrics
Abstract views : 3066 | views : 1907Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Jurnal Perlindungan Tanaman Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Perlindungan Tanaman Indonesia ISSN 1410-1637 (print), ISSN 2548-4788 (online) is published by the Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, in collaboration with Indonesian Entomological Society (Perhimpunan Entomologi Indonesia, PEI) and Indonesian Phytopathological Society (Perhimpunan Fitopatologi Indonesia, PFI). The content of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View website statistics