Olfactory Response of Diaphorina citri on Guava Leaves Powder

https://doi.org/10.22146/jpti.96847

Mofit Eko Poerwanto(1*), Chimayatus Solichah(2), Danar Wicaksono(3), Azizah Ridha Ulilalbab(4), Miftahul Ajri(5)

(1) Department of Agrotechnology, Faculty of Agriculture, UPN Veteran Yogyakarta Jln. Padjajaran No.104, Ngropoh, Condongcatur, Depok, Sleman, Yogyakarta 55283 Indonesia
(2) Department of Agrotechnology, Faculty of Agriculture, UPN Veteran Yogyakarta Jln. Padjajaran No.104, Ngropoh, Condongcatur, Depok, Sleman, Yogyakarta 55283 Indonesia
(3) Department of Agrotechnology, Faculty of Agriculture, UPN Veteran Yogyakarta Jln. Padjajaran No.104, Ngropoh, Condongcatur, Depok, Sleman, Yogyakarta 55283 Indonesia
(4) Department of Agrotechnology, Faculty of Agriculture, UPN Veteran Yogyakarta Jln. Padjajaran No.104, Ngropoh, Condongcatur, Depok, Sleman, Yogyakarta 55283 Indonesia
(5) Department of Agrotechnology, Faculty of Agriculture, UPN Veteran Yogyakarta Jln. Padjajaran No.104, Ngropoh, Condongcatur, Depok, Sleman, Yogyakarta 55283 Indonesia
(*) Corresponding Author

Abstract


Citrus Vein Phloem Degeneration (CVPD) is transmitted by the insect vector Diaphorina citri is still a major obstacle to world citrus production. Vector handling still relies on chemical insecticides which are not environmentally friendly and less effective. This study was conducted to identify the ability of dried guava leaf extract in reducing the olfactory response of D. citri. Y-tube olfactory test was conducted to identify the repellency effect of a mixture of citrus leaf extract and guava (Psidium guajava) leaf extract at various leaf ages and in various proportions to vector and its predator (Menochilus sexmaculatus). The results showed that guava leaves had a repellent effect on D. citri, but not on M. sexmaculatus. The repellant effect was higher on young guava leaves than on medium and old ones. Red guava leaves have a highest repellant effect than white guava and non-seed guava leaves. Guava leaf extract is an alternative means to control D. citri. However, the types of compounds that function as repellants need to be studied further. 


Keywords


CVPD; leaf extract; repellent; vector

Full Text:

PDF


References

Abdollahipour, M., Fathipour, Y., & Mollahosseini, A. (2020). How Does a Predator Find Its Prey? Nesidiocoris tenuis is Able to Detect Tuta absoluta by HIPVs. Journal of Asia-Pacific Entomology, 23(4), 1272–1278. https://doi.org/10.1016/j.aspen.2020.10.006

Ammar, E.D., George, J., Sturgeon, K., Stelinski, L.L., & Shatters, R.G. (2020). Asian Citrus Psyllid Adults Inoculate Huanglongbing Bacterium More Efficiently than Nymphs When This Bacterium is Acquired by Early Instar Nymphs. Scientific Reports, 10(1), 18244. https://doi.org/10.1038/s41598-020-75249-5

Barman, J.C., Campbell, S.A., & Zeng, X. (2016). Exposure to Guava Affects Citrus Olfactory Cues and Attractiveness to Diaphorina citri (Hemiptera: Psyllidae). Environmental Entomology, 45(3), 694–699. https://doi.org/10.1093/ee/nvw010

Cai, Z., Ouyang, F., Su, J., Zhang, X., Liu, C., Xiao, Y., Zhang, J., & Ge, F. (2020). Attraction of Adult Harmonia axyridis to Volatiles of the Insectary Plant Cnidium monnieri. Biological Control, 143, 104189. https://doi.org/10.1016/j.biocontrol.2020.104189.

Chen, L., Liu, Y., Wu, F., Zhang, J., Cui, X., Wu, S., Deng, X., & Xu, M. (2023). Citrus tristeza virus Promotes the Acquisition and Transmission of 'Candidatus Liberibacter Asiaticus' by Diaphorina citri. 15(4), 918. https://doi.org/10.3390/v15040918

Conchou, L., Lucas, P., Meslin, C., Proffit, M., Staudt, M., & Renou, M. (2019). Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes. Frontiers in Physiology, 10, 972. https://doi.org/10.3389/fphys.2019.00972

Das, P., Morawo, T., & Fadamiro, H. (2017). Plant-Associated Odor Perception and Processing in Two Parasitoid Species with Different Degrees of Host Specificity: Implications for Host Location Strategies. Journal of Insect Physiology, 101, 169–177. https://doi.org/10.1016/j.jinsphys.2017.08.002

David, E., & Niculescu, V.C. (2021). Volatile Organic Compounds (VOCs) as Environmental Pollutants: Occurrence and Mitigation Using Nanomaterials. International Journal of Environmental Research Public Health, 18(24), 13147. https://doi.org/10.3390/ijerph182413147

George, J., Robbins, P.S., Alessandro, R.T., Stelinski, L.L., & Lapointe, S.L. (2016). Formic and Acetic Acids in Degradation Products of Plant Volatiles Elicit Olfactory and Behavioral Responses from an Insect Vector. Chemical Senses, 41(4), 325–338. https://doi.org/10.1093/chemse/bjw005

Glinwood, R., Ahmed, E., Qvarfordt, E., Ninkovic, V., & Pettersson, J. (2009). Airborne Interactions between Undamaged Plants of Different Cultivars Affect Insect Herbivores and Natural Enemies. Arthropod-Plant Interactions, 3(4), 215–224. https://doi.org/10.1007/s11829-009-9072-9

Gómez-Marco, F., Gebiola, M., Simmons, G.S., & Stouthamer, R. (2022). Native, Naturalized and Commercial Predators Evaluated for Use against Diaphorina citri. Crop Protection, 155, 105907. https://doi.org/10.1016/j.cropro.2022.105907

Gottwald, T. R., Hall, D. G., Kriss, A. B., Salinas, E. J., Parker, P. E., Beattie, G. A. C., & Nguyen, M. C. (2014). Orchard and Nursery Dynamics of the Effect of Interplanting Citrus with Guava for Huanglongbing, Vector, and Disease Management. Crop Protection, 64, 93–103. https://doi.org/10.1016/j.cropro.2014.06.009

Huang, D., Sun, M., Han, M., Zhang, Z., Miao, Y., Zhang, J., & Yao, Y. (2020). Volatile Organic Compounds (VOCs) Regulate the Spatial Distribution of Lepidoptera Insects in an Orchard Ecosystem. Biological Control, 149, 104311. https://doi.org/10.1016/j.biocontrol.2020.104311

Hung, T., Hung, S., Chen, C., Hsu, M., & Su, H. (2004). Detection by PCR of Candidatus Liberibacter asiaticus, the Bacterium Causing Citrus Huanglongbing in Vector Psyllids: Application to the Study of Vector–Pathogen Relationships. Plant Pathology, 53, 96–102. https://doi.org/10.1046/j.1365-3059.2003.00948.x

Irvin, N. A., Pierce, C., & Hoddle, M. S. (2021). Evaluating the Potential of Flowering Plants for Enhancing Predatory Hoverflies (Syrphidae) for Biological Control of Diaphorina citri (Liviidae) in California. Biological Control, 157, 104574. https://doi.org/10.1016/j.biocontrol.2021.104574

Killiny, N., Nehela, Y., George, J., Rashidi, M., Stelinski, L.L., & Lapointe, S.L. (2021). Phytoene Desaturase-Silenced Citrus as a Trap Crop with Multiple Cues to Attract Diaphorina citri, the Vector of Huanglongbing. Plant Science, 308, 110930. https://doi.org/10.1016/j.plantsci.2021.110930

Lee, S., Km, Y. S., Choi, H. K., & Cho, S. K. (2011). Determination of the Volatile Components in the Fruits and Leaves of Guava Plants (Psidium guajava L.) Grown on Jeju Island, South Korea. Journal of Essential Oil Research, 23(6), 52-56.

Li, S., Yuan, X., Xu, Y., Li, Z., Feng, Z., Yue, X., & Paoletti, E. (2021). Biogenic Volatile Organic Compound Emissions from Leaves and Fruits of Apple and Peach Trees during Fruit Development. Journal of Environmental Sciences, 108, 152–163. https://doi.org/10.1016/j.jes.2021.02.013

Lin, T., Zhu, G., He, W., Xie, J., Li, S., Han, S., Li, S., Yang, C., Liu, Y., & Zhu, T. (2022). Soil Cadmium Stress Reduced Host Plant Odor Selection and Oviposition Preference of Leaf Herbivores through the Changes in Leaf Volatile Emissions. Science of The Total Environment, 814, 152728. https://doi.org/10.1016/j.scitotenv.2021.152728

Monzo, C., & Stansly, P.A. (2017). Economic Injury Levels for Asian Citrus Psyllid Control in Process Oranges from Mature Trees with High Incidence of Huanglongbing. PLoS ONE, 12(4), e0175333. https://doi.org/10.1371/journal.pone.0175333

Mozaffar, A., Schoon, N., Bachy, A., Digrado, A., Heinesch, B., Aubinet, M., Fauconnier, M.-L., Delaplace, P., du Jardin, P., & Amelynck, C. (2018). Biogenic Volatile Organic Compound Emissions from Senescent Maize Leaves and a Comparison with Other Leaf Developmental Stages. Atmospheric Environment, 176, 71–81. https://doi.org/10.1016/j.atmosenv.2017.12.020

Nakashima, K., Ohitsu, Y., & Prommintara, M. (1998). Detection of Citrus Organism in Citrus Plants and Psylla Diaphorina citri in Thailand. Annals of the Phytopathological Society of Japan, 64, 153–159.

Ninkovic, V., & Åhman, I. M. (2009). Aphid Acceptance of Hordeum Genotypes is Affected by Plant Volatile Exposure and is Correlated with Aphid Growth. Euphytica, 169(2), 177. https://doi.org/10.1007/s10681-009-9918-3

Nurhadi. (2015). Huanglongbing Disease (Candidatus Liberibacter asiaticus) of Citrus Plants: Threats and Control Strategies. Pengembangan Inovasi Pertanian, 8(1), 21–32.

Nusra, M.S.F., Udukala, D.N., Amarasinghe, L.D., & Paranagama, P.A. (2021). Volatiles from host plant brinjal attract the brinjal Fruit and Shoot Borer -Leucinodes orbonalis Guenee. Journal of Asia-Pacific Entomology, 24(3), 695–703. https://doi.org/10.1016/j.aspen.2021.06.002

Onagbola, E.O., Rouseff, R.L., Smoot, J.M., & Stelinski, L.L. (2011). Guava Leaf Volatiles and Dimethyl Disulphide Inhibit Response of Diaphorina citri Kuwayama to Host Plant Volatiles: Effect of Guava Leaf Volatiles on D. citri. Journal of Applied Entomology, 135(6), 404–414. https://doi.org/10.1111/j.1439-0418.2010.01565.x

Pichersky, E., & Gershenzon, J. (2002). The Formation and Function of Plant Volatiles: Perfumes for Pollinator Attraction and Defense. Current Opinion on Plant Biology, 5(3), 237–243. https://doi.org/10.1016/s1369-5266(02)00251-0

Poerwanto, M. E., & Solichah, C. (2020). The Repellency of Guava Shoots Extract to The Asian Citrus Psyllid (Diaphorina citri). Proceeding International Conference on Green Agro-Industry, 4, 209–214.

Poerwanto, M.E., Trisyono, Y.A., Subandiyah, S., Martono, E., Holford, P., & Beattie, G.A. C. (2008). Effects of Mineral Oils on Host Selection Behavior of Diaphorina citri. Jurnal Perlindungan Tanaman Indonesia, 14(1), 23–28.

Poerwanto, M., Trisyono, Y., Martono, E., Beattie, G., Holford, P., & Subandiyah, S. (2012). Olfactory Responses of the Asiatic Citrus Psyllid (Diaphorina citri) to Mineral Oil-Treated Mandarin Leaves. American Journal of Agricultural and Biological Sciences, 7(1), 50–55. https://doi.org/10.3844/ajabssp.2012.50.55

Rahman, V.J., & Babu, A. (2021). Herbivore-Induced Plant Volatiles from Red Spider Mite, Oligonychus coffeae Infested Tea Plants as Attractant Cues for the Predatory Mite, Neoseiulus longispinosus. Materials Today: Proceedings, 41, 613–617. https://doi.org/10.1016/j.matpr.2020.05.259

Ramadhan, T.H., Trisyono, Y.A., Mahrub, E., Wijonarko, A., Subandiyah, S., & Beattie, G.A.C. (2008). Pengaruh Jenis Mangsa dan Suhu pada Perkembangan Menochilus sexmaculatus Fabricius (Coleoptera: Coccinellidae) dan Peranannya dalam Pengendalian Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Jurnal Perlindungan Tanaman Indonesia, 14(1), 29‒34.

Rouseff, R.L., Onagbola, E.O., Smoot, J.M., & Stelinski, L.L. (2008). Sulfur Volatiles in Guava (Psidium guajava L.) Leaves: Possible Defense Mechanism. Journal of Agricultural and Food Chemistry, 56(19), 8905–8910. https://doi.org/10.1021/jf801735v

Rugno, G.R., Cuervo, J.G.B., Garcia, A.G., Qureshi, J., & Yamamoto, P.T. (2021). Abundance and Diversity of Lacewings in Grower Operated Organic and Conventional Pest Management Programs for Diaphorina citri (Hemiptera: Liviidae). Crop Protection, 146, 105682. https://doi.org/10.1016/j.cropro.2021.105682

Sagrero‐Nieves, L., Bartley, J.P., & Provis‐Schwede, A. (1994). Supercritical Fluid Extraction of the Volatile Components from the Leaves of Psidium guajava L. (Guava). Flavour and Fragrance Journal, 9(3), 135‒137.

Seo, M., Rivera, M.J., Stelinski, L.L., & Martini, X. (2018). Ladybird Beetle Trails Reduce Host Acceptance by Diaphorina citri Kuwayama (Hemiptera: Liviidae). Biological Control, 121, 30–35. https://doi.org/10.1016/j.biocontrol.2018.02.005

Silva, J.A.A., Hall, D.G., Gottwald, T.R., Andrade, M.S., Maldonado, W., Alessandro, R.T., Lapointe, S.L., Andrade, E.C., & Machado, M.A. (2016). Repellency of Selected Psidium guajava Cultivars to the Asian Citrus Psyllid, Diaphorina citri. Crop Protection, 84, 14–20. https://doi.org/10.1016/j.cropro.2016.02.006

Sørensen, M., Rinnan, R., Woodrow, I., Møller, B.L., & Neilson, E.H.J. (2020). The Entangled Dynamics of Eucalypt Leaf and Flower Volatile Emissions. Environmental and Experimental Botany, 176, 104032. https://doi.org/10.1016/j.envexpbot.2020.104032

Supriyanto, A., & Whittle, A. (1991). Citrus Rehabilitation in Indonesia. Proceeding of Eleventh IOCV Conference, 409–413.

Teixeira, D., Ayers, J., Danet, L., Jagoueix-Eveillard, S., Saillard, C., & Bové, J. (2005). First Report of a Huanglongbing-like Disease of Citrus in São Paulo State, Brazil, and Association of a New Liberibacter Species, ‘Candidatus Liberibacter americanus’, with the Disease. Plant Disease, 89(1), 107–107. https://doi.org/10.1094/pd-89-0107a

Xu, C., Liang, Z., Tang, D., Xiao, T., Tsunoda, M., Zhang, Y., Zhao L., Deng S., & Song, Y. (2017). Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Volatile Components from Guava Leaves. Journal of Essential Oil Bearing Plants, 20(6), 1536–1546.

Zaka, S.M., Zeng, X.-N., Holford, P., & Beattie, G.A.C. (2010). Repellent Effect of Guava Leaf Volatiles on Settlement of Adults of Citrus Psylla, Diaphorina citri Kuwayama, on Citrus. Insect Science, 17(1), 39–45. https://doi.org/10.1111/j.1744-7917.2009.01271.x



DOI: https://doi.org/10.22146/jpti.96847

Article Metrics

Abstract views : 0 | views : 0

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Jurnal Perlindungan Tanaman Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Perlindungan Tanaman Indonesia ISSN 1410-1637 (print), ISSN 2548-4788 (online) is published by the Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, in collaboration with Indonesian Entomological Society (Perhimpunan Entomologi Indonesia, PEI) and Indonesian Phytopathological Society (Perhimpunan Fitopatologi Indonesia, PFI). The content of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

View website statistics