Antibiotic Resistance Detection of Staphylococcus aureus Isolated from Dairy Cattle and Pet Animals

Alyaa Rifqoh Putri Yosyana(1*), Siti Isrina Oktavia Salasia(2), Madarina Wasissa(3), Ghias Ghifari Alhadz(4), Fatkhanuddin Aziz(5)
(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(3) Universitas Gadjah Mada
(4) Universitas Gadjah Mada
(5) Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Antibiotics play a significant role in controlling bacterial infection, however, will no longer be effective because of antimicrobial resistance (AMR). Staphylococcus aureus has become resistant to various antibiotics, so detecting and analyzing genes encoding antibiotic resistance traits is important. This research aims to identify phenotypically, antibiotic sensitivity, and detect antibiotic-resistant genes in S. aureus isolated from dairy cattle and pet animals. Samples from dairy farms in Boyolali total of 30 samples and 62 samples of pet animals in Yogyakarta and Semarang were used. Phenotypic and genotypic identification results based on 23S rRNA and nuc genes showed 80% (24/30) dairy milk samples and 19,35% (12/62) pet animal samples were S. aureus positive. Based on antibiotic susceptibility test, dairy milk S. aureus isolates are resistant to penicillin G (50%), oxacillin (25%), tetracycline (21%), ampicillin (17%), gentamicin, cefoxitin, and amoxicillin (13%), clindamycin (4%), and still sensitive to erythromycin (100%). Pet animal S. aureus isolates showed resistance to oxacillin and erythromycin (13,3%), tetracycline, penicillin G, and clindamycin (6,67%), but still sensitive to gentamicin, ampicillin, cefoxitin, and ciprofloxacin and amoxicillin (100%). These results showed S. aureus dairy milk and pet animal isolates phenotypically have resistance almost 50% to various antibiotics but are still sensitive to erythromycin. The result of this research indicated there are majority of multidrug-resistant S. aureus strains in dairy milk and pet animals threaten public health. These results can be used as a basic strategy for controlling and preventing multidrug resistance in S. aureus.
Keywords
References
Abdullahi, I. N., Zarazaga, M., Campana-Burguet, A., Eguizabal, P., Lozano, C., and Torres, C. (2022). Nasal Staphylococcus aureus and S. pseudintermedius carriage in healthy dogs and cats: a systematic review of their antibiotic resistance, virulence and genetic lineages of zoonotic relevance. Journal of Applied Microbiology. 133: 3368-3390.
Almwafy, A. T., Barghoth, M. G., Desouky, S. E., and Roushdy, M. (2020). Preliminary characterization and identification of Gram positive hemolysis bacteria. Az. J. Pharm Sci. 62: 96-109.
Ariyanti, D., Salasia, S. I. O., and Tato, S. (2011). Characterization of haemolysin of Staphylococcus aureus Isolated from Food of Animal Origin. Indonesian Journal of Biotechnology. 16(1): 32-37.
Baddour, L. M., Tayidi, M. M., Walker, E., McDevitt, D., and Foster, T. J. (1994). Virulence of coagulase-deficient mutants of Staphylococcus aureus in experimental endocarditis. J Med Microbiol. 41: 259-263.
Beveridge,T. J. (2000). Use of the Gram stain in microbiology. Biotechnic & Histochemistry. 76(3): 111-118.
Carroll, K. C., Butel, J. S., Morse, S. A., and Mietzner, T. (2015). Jawetz, Melnick & Adelberg’s Medical Microbiology 27th Edition. New York: McGraw-Hill.
Ceniti, C., Britti, D., Santoro, A. M. L., Musarella, R., Ciambrone, L., Casalinuovo, F., and Costanzo, N. (2017). Phenotypic antimicrobial resistance profile of isolates causing clinical mastitis in dairy animals. Italian Journal of Food Safety. 6(6612): 84-87.
Clinical and Laboratory Standards Institute. (2017). Performance Standards for Antimicrobial Susceptibility Testing 27th Edition. London: CLSI Document M100-S27.
Corrente, M., Ventrella, G., Greco, M. F., Martella, V., Parisi, A., and Buonavoglia, D. (2013). Characterisation of a catalase-negative methicillin-resistant Staphylococcus aureus isolate from a dog. Veterinary Microbiology. 167: 734-736.
Del’Alamo, L., d’Azevedo, P. A., Strob, A. J., Rodriguez-Lopez, D. V., Monteiro, J., Andrade, S. S., Pignatari, A. C. C., and Gales, A. C. (2007). An outbreak of catalase-negative meticillin-resistant Staphylococcus aureus. Journal of Hospital Infection. 65(3): 226-230.
Desouky, S. E., El-Gamal, M. S., Mohammed, A. F., and Abu-Elghait, M. A. (2014). Determination of some virulence factors in Staphylococcus spp. Isolated from Clinical Samples of Different Egyptian Patients. World Applied Sciences Journal. 32(4): 731-740.
Engelkirk, P. G. and Duben-Engelkirk, J. (2008). Laboratory Diagnosis of Infectious Diseases: Essentials of Diagnostic Microbiology. Maryland: Lippincott Williams & Wilkins.
Fitranda, M., Salasia, S. I. O., Sianipar, O., Dewananda, D. A., Arjana, A. Z., Aziz, F., Wasissa, M., Lestari, F. B., and Santosa, C. M. (2023). Methicillin-resistant Staphylococcus aureus isolates derived from humans and animals in Yogyakarta, Indonesia. Veterinary World. 16(1): 239-245.
Kamaruddin, E. (2020). Study of growth patterns of Staphylococcus aureus in human blood and sheep. Biodiversity International Journal. 4(2): 112-115.
Kateete, D. P., Kimani, C. N., Katabzi, F. A., Okeng, A., Okee, M. S., Nanteza, A., Joloba, M. L., and Najjuka, F. C. (2010). Identification of Staphylococcus aureus: Dnase and Mannitol salt agar improve the efficiency of the tube coagulase test. Annals of Clinical Microbiology and Antimicrobials. 9(23): 1-7.
Katz, D. S. (2016). Coagulase Test Protocol. Washington D. C.: American Society for Microbiology.
Kuipers, A., Koops, W. J., and Wemmenhove, H. (2016). Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J. Dairy Sci. 99: 1632-1648.
Leber, A. L. (2016). Clinical Microbiology Procedures Handbook. Washington DC: ASM Press.
Lee, A. S., de Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A., and Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Disease Primers. 4(18033): 1-23.
Locatelli, C., Gattolin, S., Monistero, V., Castiglioni, B., Moroni, P.,
Addis, M. F., and Cremonesi, P. (2023). Staphylococcus aureus coa gene sequence analysis can prevent misidentification of coagulase-negative strains and contribute to their control in dairy cow herds. Frontiers in Microbiology. 14(1120305): 1-8.
Lubna, Hussain, T., Shami, A., Rafiq, N., Khan, S., Kabir, M., Khan, N. U., Khattak, I., Kamal, M., and Usman, T. (2023). Antimicrobial usage and detection of multidrug-resistant Staphylococcus aureus: Methicillin- and tetracycline-resistant strains in raw milk of lactating dairy cattle. Antibiotics. 12(673): 1-11.
McAdow, M., Missiakas, D. M., and Schneewind, O. (2012). Staphylococcus aureus secretes coagulase and von Willebrand factor binding protein to modify the coagulation cascade and establish host infections. Journal of Innate Immunity. 4: 141-148.
Messina, C. G. M., Reeves, E. P., Roes, J., and Segal, A. W. (2002). Catalase negative Staphylococcus aureus retain virulence in mouse model of chronic granulomatous disease. FEBS Lett. 518: 107-110.
Moreillon, P., Entenza, J. M., Francioli, P., McDevitt, D., Foster, T. J., Francois, P., and Vaudaux, P. (1995). Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun. 63: 4738-4743.
Moyes, R. N., Reynolds, J., and Breakwell, D. P. (2009). Differential Staining of Bacteria: Gram Stain. Current Protocols in Microbiology. DOI: 10.1002/9780471729259.mca03cs15
Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetchinski, L., Robies, A. G., and Naghavi, M. et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systemic analysis. The Lancet. 399(10325): 629-655.
Natasa, R. S., Vera, K., and Branko, V. (2014). Characteristics of coagulase positive Staphylococci isolated from milk in cases of subclinical mastitis. Acta Veterinaria-Beogard. 64(1): 115-123.
O’Neill, J. (2016). Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Review on Antimicrobial Resistance. London: Wellcome Trust.
Phonimdaeng, P., O’Reilly, M., Nowlan P., Bramley, A. J., and Foster, T. J. (1990). The coagulase of Staphylococcus aureus: Sequence analysis of site-specific coagulase-deficient mutants. Mol. Microbiol. 4: 393-404.
Reiner, K. (2016). Catalase Test Protocol. Washington D. C.: American Society for Microbiology.
Rukumani, D. V., Kamar, A. A., Ardita, D. R., Nee, T. S., Yusof, Y. M., Sekaran, S. D. and Shankar, E. M. (2014). Recalcitrant coagulase-negative methicillin-sensitive Staphylococcus aureus in an extremely low-birth-weight pre-term infant with thrombocytopaenia. JMM Case Reports. DOI 10.1099/jmmcr.0.004242
Sahibzada, S., Abraham, S., Coombs, G. W., Pang, S., Hernandez-Jover, M., Jordan, D., and Heller, J. (2017). Transmission of highly virulent community-associated MRSA ST93 and livestock-associated MRSA St398 between humans and pigs in Australia. Scientific Reports. 7(5273): 1-10.
Sharma, D., Sharma, P. K., and Malik, A. (2011). Prevalence and antimicrobial susceptibility of drug resistant Staphylococcus aureus in raw milk of dairy cattle. International Research Journql of Microbiology. 2(11): 466-470.
Shields, P. and Tsang, A. Y. (2016). Mannitol Salt Agar Plates Protocols. Washington D.C.: American Society for Microbiology.
Silva, G. O., Castro, R. D., Oliveira, L. G., Sant’Anna, F. M., Barbosa, C. D., Sandes, S. H. C., Silva, R. S., Resende, M. F. S., Lana, A. M. Q., Nunes, A. C., Cerqueira, M. M. O. P., and Souza, M. R. (2020). Viability of Staphylococcus aureus and expression of its toxins (SEC and TSST-1) in cheeses using Lactobacillus rhamnosus D1 or Weissella paramesenteroides GIR16L4 or both as starter cultures. J. Dairy Sci. 103: 4100-4108.
Sunagar, R., Deore, S. N., Deshpande, P. V., Rizwan, A., Sannejal, A. D., Sundareshan, S., Rawool, D. B., Barbuddhe, S. B., Jhala, M. K., Bannalikar, A. S., Mugalikar, D. M., Kumari, V. J., Dhanalakshmi, K., Reddy, Y. N., Rao, P. P., Babra, C., Tiwari, J. G., Mukkur, T. K., Costantino, P., Wetherall, J. D., Isloor, S., and Hegde, N. R. (2013). Differentiation of Staphylococcus aureus and Staphylococcus epidermidis by PCR for the fibrinogen binding protein gene. J. Dairy Sci. 96: 2857-5862.
Titouche, Y., Akkou, M., Houali, K., Auvray, F., and Hennekinne, J. (2022). Role of milk and milk products in the spread of methicillin-resistant Staphylococcus aureus in the dairy production chain. J. Food. Sci. 87: 3699-3723.
Valmorbida, M. K., Cardozo, M. V., Almeida, C. C., Pereira, N., Dezen, D., Assis, M. Z., Verbisck, N. V., Griebeler, E., Pizauro, L. J. L., and Avila, F. A. (2022). Association between coa gene and enterotoxin gene in S. aureus from dairy cattle in Brazil. Food Science and Technology. 43: 1-9.
Veras, J. F., do Carmo, L. S., Tong, L. C., Shupp, J. W., Cummings, C., dos Santos, D. A., Cerqueira, M. M. O. P., Cantini, A., Nicoli, J. R., and Jett, M. (2008). A study of the enterotoxigenicity of coagulase-negative and coagulase-positive staphylococcal isolates from food poisoning outbreaks in Minas Gerais, Brazil. International Journal of Infectious Diseases. 12: 410-415.
Von Eiff. C. (2008). Staphylococcus aureus small colony variants: a challenge to microbiologists and clinicians. International Journal of Antimicrobial Agents. 31: 507-510.
Wayne, A., McCarthy, R., and Lindenmayer, J. (2011). Therapeutic antibiotic use patterns in dogs: observations from a veterinary teaching hospital. Journal of Small Animal Practice. 52: 310-318.
Widianingrum, D. C. Windria, S., and Salasia, S. I. O. (2016). Antibiotic Resistance and Methicillin Resistant Staphylococcus aureus Isolated from Bovine, Crossbred Etawa Goat and Human. Asian Journal of Animal and Veterinary Advances. 11: 122-129.
World Health Organization. (2015). Global Action Plan on Antimicrobial Resistance. Geneva: World Health Organization.
Younis, G., Sadat, A., and Maghawry, M. (2018). Characterization of Coa Gene and Antimicrobial Profiles of Staphylococcus aureus Isolated from Bovine Clinical and Subclinical mastitis. Advances in Animal and Veterinary Sciences. 6(4): 161-168.

Article Metrics

Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Jurnal Sain Veteriner

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Sain Veteriner Indexed by
Copyright of JSV (Jurnal Sain Veteriner) ISSN 0126-0421 (print), ISSN 2407-3733 (online).
Fakultas Kedokteran Hewan, Universitas Gadjah Mada
Jl. Fauna No.2, Karangmalang, Yogyakarta
Phone: 0274-560862
Fax: 0274-560861
Email: jsv_fkh@ugm.ac.id
HP. 0895363078367
Jurnal Sain Veteriner is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.