Screening and Identification of Lactic Acid Bacteria from Livestock Rumen as Probiotic Candidates
Desy Cahya Widianingrum(1*), Ahmad Ilham Tanzil(2), Rachmi Masnilah(3), Suhartiningsih Dwi Nurcahyanti3(4), Vivi Fitriani(5), Himmatul Khasanah(6)
(1) ID Scopus: 57031859300, ID Sinta: 6789605, Department of Animal Science, Faculty of Agriculture, Jember, East Java, Indonesia.
(2) Department of Agrotechnology, Faculty of Agriculture, Jember, East Java, Indonesia.
(3) Department of Plant Protection, Faculty of Agriculture, Jember, East Java, Indonesia
(4) Department of Plant Protection, Faculty of Agriculture, Jember, East Java, Indonesia
(5) 4Department of Soil Science, Faculty of Agriculture, Jember, East Java, Indonesia
(6) Department of Animal Science, Faculty of Agriculture, Jember, East Java, Indonesia.
(*) Corresponding Author
Abstract
Population of lactic acid bacteria (LAB) in the rumen of fattening livestock is relatively high and has the potential to be utilized. This study aimed to screen and identify LAB from the rumen as probiotic candidates. The research used rumen liquid from cattle, goats, and sheep collected from slaughterhouses in Bondowoso. The screening and identification processes were conducted at the Livestock Agroindustry Laboratory, Faculty of Agriculture, University of Jember. The screening included colony morphology, Gram staining, cell shape, catalase test, and Carbon dioxide (CO2) gas production ability. The final identification of potential probiotic bacterial candidates was based on their bile salt tolerance. The results showed that there were LAB candidates with 22 isolates (from sheep/OS), 19 isolates (from cattle/OC), and 18 isolates (from goats/OG). The bacterial colony shape included oval (2OS, 1OC), circular (11OS, 18OC, 12OG), irregular (7OS, 6OG), and spindle (2OS). Colony sizes ranged from small (0.5–1.2 mm: 7 OS, 9OC, 4OG), medium (1.2–3.0 mm: 7OS, 7OC, 7OG), to large (3.0–5.0 mm: 8OS, 3OC, 7OG), with the majority of colonies being white and cream-colored, and a minority being yellow. All bacteria were Gram-positive, with coccus (19OS, 14OC, 2OG) and bacillus (3OS, 5OC, 16OG) shaped cells. All samples were capable of producing CO2 gas, and 50% of the isolates possessed catalase enzymes. Based on bile salt tolerance tests, 15% of the isolates had a survival rate of over 50%. In conclusion, LAB from the rumen, particularly goats, were identified as potential probiotic candidates for further development.
Keywords
Full Text:
PDFReferences
Ahirwar, S.S., Gupta, M.K., Gupta, G., & Singh, V. (2017). Screening, isolation and identification of lactobacillus species from dental caries of children. Int J Curr Microbiol App Sci, 6(1): 497-503.
Anwar, S., Alrumaihi, F., Sarwar, T., Babiker, A. Y., Khan, A.A., Prabhu, S.V., & Rahmani, A.H. (2024). Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules, 14(6): 697.
Aphale, D., Natu, A., Laldas, S., & Kulkarni, A. (2019). Administration of Streptococcus bovis isolated from sheep rumen digesta on rumen function and physiology as evaluated in a rumen simulation technique system. Veterinary world, 12(9): 1362.
Chen, L., Ren, A., Zhou, C., & Tan, Z. (2017). Effects of Lactobacillus acidophilus supplementation for improving in vitro rumen fermentation characteristics of cereal straws. Italian Journal of Animal Science, 16(1): 52-60.
Coico, R. (2006). Gram staining. Current protocols in microbiology, John Wiley & Sons, Inc, New York, USA.
Darwin, Barnes, A., & Cord-Ruwisch, R. (2018). In vitro rumen fermentation of soluble and non-soluble polymeric carbohydrates in relation to ruminal acidosis. Annals of microbiology, 68: 1-8.
Daughtry, K.V., Johanningsmeier, S.D., Sanozky-Dawes, R., Klaenhammer, T.R., & Barrangou, R. (2018). Phenotypic and genotypic diversity of Lactobacillus buchneri strains isolated from spoiled, fermented cucumber. International journal of food microbiology, 280: 46-56.
Dewi, M.P.L., Suryani, N.N., & Mudita, I.M. (2015). Populasi mikroba inokulan yang diproduksi dari cairan rumen sapi bali dan rayap. Peternakan Tropika, 3(1): 13-28.
Goyal, R., Dhingra, H., Bajpai, P., & Joshi, N. (2012). Characterization of the Lactobacillus isolated from different curd samples. African Journal of Biotechnology, 11(79): 14448-14452.
Guo, L., Yao, D., Li, D., Lin, Y., Bureenok, S., Ni, K., & Yang, F. (2020). Effects of lactic acid bacteria isolated from rumen fluid and feces of dairy cows on fermentation quality, microbial community, and in vitro digestibility of alfalfa silage. Frontiers in Microbiology, 10: 2998.
Hamilton, I.R., & Svensäter, G. (1998). Acid‐regulated proteins induced by Streptococcus mutans and other oral bacteria during acid shock. Oral microbiology and immunology, 13(5): 292-300.
Holzapfel W. H., Haberer P., Geisen R., Björkroth J., and Schillinger U. (2001). Taxonomy and important features of probiotic microorganisms in food and nutrition. The American Journal of Clinical Nutrition, 73.
Hu, G., Jiang, H., Zong, Y., Datsomor, O., Kou, L., An, Y., ... & Miao, L. (2022). Characterization of lactic acid-producing bacteria isolated from rumen: growth, acid and bile salt tolerance, and antimicrobial function. Fermentation, 8(8): 385.
Karyantina, K., & Sumarmi, S. (2019). Potensi bakteri asam laktat (BAL) dari jus tempe sebagai kandidat probiotik. Sains dan Teknologi, 8(2): 123-130.
König, H., & Fröhlich, J. (2017). Lactic acid bacteria. Biology of Microorganisms on Grapes, in Must and in Wine, 3-41.
Kusumawati, M., Kurniati, I., Dermawan, A., Wahyuni, Y., & Setiaputri, I. (2023). Pengaruh konsentrasi darah domba dan waktu inkubasi terhadap pertumbuhan Streptococcus pneumoniae. Jurnal Kesehatan Siliwangi, 4(1): 87-100.
McDonald, L.C., McFeeters, R.F., Daeschel, M.A., & Fleming, H. (1987). A differential medium for the enumeration of homofermentative and heterofermentative lactic acid bacteria. Applied and environmental microbiology, 53(6): 1382-1384.
Mialon, M.M., Renand, G., Ortigues-Marty, I., Bauchart, D., Hocquette, J. F., Mounier, L., ... & Doreau, M. (2015). Fattening performance, metabolic indicators, and muscle composition of bulls fed fiber-rich versus starch-plus-lipid-rich concentrate diets. Journal of Animal Science, 93(1): 319-333.
Miura, H., Hashimoto, T., Kawanishi, Y., Kawauchi, H., Inoue, R., Shoji, N., ... & Koike, S. (2021). Identification of the core rumen bacterial taxa and their population dynamics during the fattening period in Japanese Black cattle. Animal Science Journal, 92(1): e13601.
Narimani T., Tari Nejad A.R, Hejazi, M.A. (2015). Isolation and biochemical and molecular identification of Lactobacillus bacteria with probiotic potential from traditional cow milk and yogurt of Khoi city. Food Science and Technology, 12 (48):115-128
Gibson G.R. and Fuller R., Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use, The Journal Of Nutrition. (2000) 130, 391–395.
Papadimitriou, K., Alegría, Á., Bron, P. A., De Angelis, M., Gobbetti, M., Kleerebezem, M., ... & Kok, J. (2016). Stress physiology of lactic acid bacteria. Microbiology and Molecular Biology Reviews, 80(3): 837-890.
Rashid, S., & Hassanshahian, M. (2016). Screening, isolation and identification of lactic acid bacteria from a traditional dairy product of Sabzevar, Iran. International Journal of Enteric Pathogens, 2(4): 3-18393.
Reiner, K. (2010). Catalase test protocol. American society for microbiology, Bartlett Publishers, Inc., Sudbury.
Sharma, D., Kapila, S., & Kapila, R. (2020). Acid tolerance marker of the probiotic bacteria at molecular level–a review. Frontiers in Life Science, 1(3): 84.
Sneath P. and Holt J. (2001). Bergey’s Manual Of Systematic Bacteriology, A Waverly Company, Williams & Wilkins, Springer-Verlag, New York, USA.
Suardana I.W., Cahyani A.P., Pinatih K.J.P. (2016). Probiotic Potency and Molecular Identification of Lactic Acid Bacteria Isolated from Bali Cattle’s Colon, Indonesia. Global Advanced Research Journal of Medicine and Medical Sciences, 5:143-149.
Waditee-Sirisattha, R., & Kageyama, H. (2024). Novel NhaC Na+/H+ antiporter in cyanobacteria contributes to key molecular processes for salt tolerance. Plant Molecular Biology, 114(6): 1-16.
Wang, Y.L., Wang, W.K., Wu, Q.C., Zhang, F., Li, W.J., Yang, Z.M., ... & Yang, H.J. (2022). The effect of different lactic acid bacteria inoculants on silage quality, phenolic acid profiles, bacterial community and in vitro rumen fermentation characteristic of whole corn silage. Fermentation, 8(6): 285.
Windy, W., & Dewi, L. (2023). Detection of Lactic Acid Bacteria (LAB) In Soaking Water of Arabica Coffee Cherries on Mount Sindoro. Journal of World Science, 2(9): 1375-1386.
Xu, J., Guo, L., Zhao, N., Meng, X., Zhang, J., Wang, T., ... & Fan, M. (2023). Response mechanisms to acid stress of acid-resistant bacteria and biotechnological applications in the food industry. Critical Reviews in Biotechnology, 43(2): 258-274.
Yu, J., Gao, W., Qing, M., Sun, Z., Wang, W., Liu, W., ... & Zhang, H. (2012). Identification and characterization of lactic acid bacteria isolated from traditional pickles in Sichuan, China. The Journal of general and applied microbiology, 58(3): 163-172.
Zhang, F., Miao, F., Wang, X., Lu, W., & Ma, C. (2021). Effects of homo-and hetero-fermentative lactic acid bacteria on the quality and aerobic stability of corn silage. Canadian Journal of Animal Science, 101(4): 761-770.
Zhang, L., Jiang, X., Liu, X., Zhao, X., Liu, S., Li, Y., & Zhang, Y. (2019). Growth, health, rumen fermentation, and bacterial community of Holstein calves fed Lactobacillus rhamnosus GG during the preweaning stage. Journal of Animal Science, 97(6): 2598-2608.
Zhang, R., Dong, X., Zhou, M., Tu, Y., Zhang, N., Deng, K., & Diao, Q. (2017). Oral administration of Lactobacillus plantarum and Bacillus subtilis on rumen fermentation and the bacterial community in calves. Animal Science Journal, 88(5): 755-762.
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Jurnal Sain Veteriner

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Sain Veteriner Indexed by
Copyright of JSV (Jurnal Sain Veteriner) ISSN 0126-0421 (print), ISSN 2407-3733 (online).
Fakultas Kedokteran Hewan, Universitas Gadjah Mada
Jl. Fauna No.2, Karangmalang, Yogyakarta
Phone: 0274-560862
Fax: 0274-560861
Email: jsv_fkh@ugm.ac.id
HP. 0895363078367
Jurnal Sain Veteriner is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









