Effect of Cryoprotectans and Cryopreservation on Physiological and Some Biochemical Changes of Hopea odorata Roxb. Seed


Laila Ainur Rohmah(1), Dian Latifah(2), Fitri Fatma Wardani(3), Aulia Hasan Widjaya(4), Kumala Dewi(5*)

(1) Post graduate alumni of Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Research Center for Plant Conservation and Botanical Gardens (Bogor Botanical Gardens), Indonesian Institute of Sciences, Jl. Ir. H. Juanda No. 13, Bogor 16122, Indonesia
(3) Research Center for Plant Conservation and Botanical Gardens (Bogor Botanical Gardens), Indonesian Institute of Sciences, Jl. Ir. H. Juanda No. 13, Bogor 16122, Indonesia
(4) Research Center for Plant Conservation and Botanical Gardens (Bogor Botanical Gardens), Indonesian Institute of Sciences, Jl. Ir. H. Juanda No. 13, Bogor 16122, Indonesia
(5) Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Yogyakarta 55281, Indonesia
(*) Corresponding Author


Hopea odorata Roxb. is a forest plant from Dipterocarpaceae family that has important economic and ecological functions in the ecosystem.  Generative propagation of H. odorata is limited because of its recalcitrant seed that cannot be stored for long periods at room temperature or even at low temperature. Cryopreservation is a seed storage technique that has the potential to prolong the shelf life of recalcitrant seeds. The aim of this study was to evaluate the effect of cryoprotectant and cryopreservation treatment on seed viability and biochemical change (electrolyte leakage, total malondialdehyde, total phenol) of H. odorata seeds. Fresh seeds of H. odorata were treated with two types of cryoprotectans namely PVS1 as non penetrating cryoprotectant and PVS2 as penetrating cryoprotectant, each type of cryoprotectant with four different concentrations (25, 50, 75 or 100%(w/v)) and four different immersion times (30, 60, 90 or 120 mins). Seeds were then stored in two different temperatures, at room temperature (28±2⁰C) or in liquid nitrogen (-196±2⁰C) for 24 hours to evaluate the cryoprotectant toxicity. The results showed that H. odorata seeds stored at room temperature and immersed either in 100%, 75% or 50% of PVS1 possess a higher viability as well as germination percentage, germination rate, vigour index and maximum growth potensial. In addition, they have lower value of electrolyte leakage, total malondialdehyde and total phenol compared to those seeds treated with PVS2. Meanwhile, both type of cryoprotectants and cryopreservation treatment in this study have not been able yet to increase seed viability of H. odorata. Cryopreservation treatments caused an increase in the total of malondialdehyde and electrolyte leakageas and these leads the inability of  H. odorata seeds to germinate. PVS1 cryoprotectant seems to cause less toxic effects on H. odorata seeds but it can not prevent the negative impact of cryopreservation treatment.



tropical biodiversity; seed storage and biotechnology; cryopreservation, recalcitrant seed;

Full Text:



Aronen, T.S. et al., 1999. Genetic fidelity of cryopreserved embryogenic cultures of open- pollinated Abies cephalonica. Plant Science, 142(2), pp.163-172. doi: 10.1016/S0168-9452(98)00244-1.

Ashton, M.S., Singhakumara, B. & Gunatilleke, N., 2011. Sustainable forest management for mixed-dipterocarp forests : acase study metadata of the book that will be visualized online. TROPICAL,8, pp 193-213. doi:10.1007/978-3-642-19986-8_13.

Berjak, P. & Pammenter, N.W., 2013. Implications of the lack of desiccation tolerance in recalcitrant seeds. Frontiers in Plant Science, 4, pp.1-10. doi: 10.3389/fpls.2013.00478.

Best, B.P., 2015. Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Research, 18(5), pp.422-436. doi: 10.1089/rej.2014.1656.

Bettoni, J.C. et al., 2019. Cryopreservation of 12 vitis species using apical shoot tips derived from plants grown in vitro. HortScience, 54(6), pp.976-981. doi: 10.21273/HORTSCI13958-19.

Burritt, D.J., 2012. Proline and the cryopreservation of plant tissues: functions and practical applications. InCurrent frontiers in cryopreservation. London, UK: IntechOpen.doi: 10.5772/2528.

Chua, L.S.L. et al., 2010. Research Pamphlet No. 129Malaysia plant red list Peninsular Malaysian Dipterocarpaceae,Forest Research Institute Malaysia.

Djam'an, D.F., Priadi, D. & Sudarmanowati, E., 2006. Cryopreservation of Dammar (Agathis damara Salisb.) seeds in liquid nitrogen. Biodiversitas Journal of Biological Diversity, 7(2), pp.164–167. doi: 10.13057/biodiv/d070215.

Galluzzi, L. et al., 2013. Cell Senescence: methods and protocols, Totowa, N.J.: Humana Press. doi: 10.1007/978-1-62703-239-1.

ISTA. International Rules for Seed Testing. 2015. International Seed Testing Association, Bassersdorf, Switzerland.

ISTA. International Rules for Seed Testing. 2018. International Seed Testing Association, Bassersdorf, Switzerland.

Jang, T.H. et al., 2017. Cryopreservation and its clinical applications. Integrative Medicine Research, 6(7), pp.12-18. doi: 10.1016/j.imr.2016.12.001.

Jitsopakul, N. et al., 2012. Effect of cryopreservation on seed germination and protocorm development of Vanda tricolor. ScienceAsia, 38(3), pp.244-249. doi: 10.2306/scienceasia1513-1874.2012.38.244.

Joker, D.F.S.C. & Salazar, C.R., 2000. Seed leaflet King. Danida Forest Seed Centre, 35(17), pp.1-2.

Joshi, A.J., 2016. A review and Application of Cryoprotectant: The Science of Cryonics. PharmaTutor, 4(1), pp.12-18.

Junaedi, A. & Frianto, D., 2012. Kualitasbibit Merawan (Hopea odorata Roxb.) asal KOFFCO system pada berbagai umur. Jurnal Penelitian Hutan dan Konservasi Alam, 9(3), pp.265-274. doi: 10.20886/jphka.2012.9.3.265-274.

Kartha, K.K., 1985. Meristem Culture and Germplasm Preservation. In Cryopreservation of plant cells and organs. Florida: Cue Press, pp. 116-134.

Kim, D.H. et al., 2009. Effects of cryoprotectants and post-storage priming on seed germination of Sugi (Cryptomeriajaponica D. Don). Silvae Genetica, 58(4), pp.162-168. doi: 10.1515/sg-2009-0021.

Lodong, O. et al., 2015. Peranan kemasan dan media simpan terhadap ketahanan viabilitas dan vigor benih Nangka (Artocarpus heterophyllus Lamk) kultivar Tulo-5 selama penyimpanan. Agrotekbis, 3(3), pp.303-315.

Ly, et al., V. 2017. Hopea odorata. The IUCN red list of threatened species2017 viewed 5 Mei 2020, from https://doi.org/10.2305%2FIUCN.UK.2017-3.RLTS.T32305A2813234.en.

Ma, D. et al., 2016. Accumulation of phenolic compounds and expression profiles of phenolic acid biosynthesis-related genes in developing grains of white, purple, and red wheat. Frontiers in Plant Science,7, pp.1-11.doi: 10.3389/fpls.2016.00528.

Narayanan, S. et al., 2015. Wheat leaf lipids during heat stress: I. high day and night temperatures result in major lipid alterations. Plant Cell Environment, 39(4), pp.787-803. doi: 10.1111/pce.12649.

Ntuli, T.M. et al., 2011. Increased drying rate lowers the critical water content for survival in embryonic axes of english Oak (Quercus robur L.) seeds F. Journal of Integrative Plant Biology, 53(4), pp.270-280. doi: 10.1111/j.1744-7909.2010.01016.x.

O’Brien, C. et al., 2020. First report on cryopreservation of mature shoot tips of two avocado (Persea americana Mill.) rootstocks. Plant Cell, Tissue and Organ Culture (PCTOC), 144(1), pp.103-113. doi: 10.1007/S11240-020-01861-Y.

Olvera-Carrillo, Y., Luis Reyes, J. & Covarrubias, A.A., 2011. Late embryogenesis abundant proteins Versatile players in the plant adaptation to water limiting environments. Plant Signaling & Behavior, 6, pp.586-589. doi: 10.4161/psb.6.4.15042.

Orwa, C.et al., 2009. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0, in World Agroforestry, viewed 21 November 2020, from http://apps.worldagroforestry.org/treedb/AFTPDFS/Hopea_odorata.PDF

Pukacki, P.M. & Juszczyk, K., 2015. Desiccation sensitivity and cryopreservation of the embryonic axes of the seeds of two Acer species. Trees,29, pp.385-396. doi: 10.1007/s00468-014-1118-7.

Radha, R.K., Decruse, W.S. & Krishnan, P.N., 2012. 21 Plant Cryopreservation. In Current frontiers in cryopreservation. London, UK: IntechOpen.doi: 10.5772/35919.

Rohmah, L.A. 2021. Uji Daya Simpan Benih Merawan (Hopea odorata Roxb.) dan Evaluasi Peningkatan Viabilitasnya Melalui Teknik Kriopreservasi. Thesis Program Magister. Program Studi Biologi Tropika. Fakultas Biologi. Universitas Gadjah Mada. Yogyakarta

Roostika, I. 2013. Optimasi dan evaluasi metode kriopreservasi Purwoceng. Jurnal Littri, 19(3), pp.147-157. doi: 10.21082/jlittri.v19n3.2013.147-157.

Sasaki, S., 2008. Physiological characteristics of tropical rain forest tree species: a basis for the development of silvicultural technology. Proceedings of the Japan Academy. Series B, Physical and biological sciences, 84(2), pp.31–57. doi: 10.2183/PJAB.84.31.

Stewart, R.R.C. & Bewley, J.D., 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology,65, pp.245-248. doi:1104/pp.65.2.245.

Suhendra, D., Haryati, H. & Siregar, L.A., 2014. Pengaruh metode strafikasi suhu rendah, krioprotektan dan kriopreservasi terhadap viabilitas benih Rosela (Hibiscus sabdariffa L.). Jurnal Agroekoteknologi Universitas Sumatera Utara, 2(4), pp.1511–1517. doi: 10.32734/jaet.v2i4.8451.

Sukesh & Chandrashekar, K.R. 2011. Effect of temperature on viability and biochemical changes during storage of recalcitrant seeds of Hopea ponga (Dennst.) Mabberly : an endemic species of Western Ghats. Research Journal Seed Science,4, pp.106-116. doi: 10.3923/rjss.2011.106.116.

Sukesh & Chandrashekar, K.R., 2013. Effect of temperature on viability and biochemical changes during storage of recalcitrant seeds of Vatica chinensis L. International Journal of Botany, 9(2), pp.73-79. doi: 10.3923/ijb.2013.73.79.

Vendrame, W. et al., 2014. Review orchid cryopreservation. Agrotec Science Journal, 38(3), pp.213-229. doi: 10.1590/S1413-70542014000300001.

Wang, B. et al., 2014. Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotechnology Advances, 32(3), pp.583–595. doi: 10.1016/J.BIOTECHADV.2014.03.003.

Wardani, F.F. et al., 2019. Cryopreservation of papaya seeds cv. Sukma, Callina, and Caliso: Effect of loading treatment and immersion time in plant vitrification solution-2. Nusantara Bioscience, 11(1), pp.71-78. doi: 10.13057/nusbiosci/n110112.

Weinland, G. 1998. Chapter 9 plantations. In A review of Dipterocarps taxonomy, ecology and silviculture. Bogor: CIFOR, pp.151-186.

Yan, Q. et al., 2014. Cryopreservation strategies for pomelo seeds from Xishuangbanna, South China. Seed Science and Technology, 42(2), pp.202–213. doi: 10.15258/sst.2014.42.2.09.

Zanzibar, M.et al., 2019. Teknik penyimpanan benih Meranti Balau (Shorea seminis (de Vriese) Sloot). Jurnal Perbenihan Tanaman Hutan, 7(2), pp.113-125.

Zamecnik, J. et al, 2021. Vitrification solutions for plant cryopreservation: modification and properties. Plants, 10(12), pp.1-17. doi:10.3390/plants10122623

Zhang, Z. & Huang, R., 2013. Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. BIO-PROTOCOL, 3(14). doi: 10.21769/BIOPROTOC.817.

DOI: https://doi.org/10.22146/jtbb.67360

Article Metrics

Abstract views : 1548 | views : 1040


  • There are currently no refbacks.

Copyright (c) 2022 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)