Utilization of Coffee Pulp Waste Composted with Cellulolytic Actinomycetes to Enhance Chili Plant Growth

https://doi.org/10.22146/jtbb.69274

Umi Fatmawati(1*), Dewi Puspita Sari(2), Meti Indrowati(3), Slamet Santosa(4), Sri Martina Wiraswati(5), Harlita Harlita(6)

(1) Biology Education Study Program, Universitas Sebelas Maret. Jl. Ir. Sutami 36A Surakarta 57126, Central Java
(2) Biology Education Study Program, Universitas Sebelas Maret. Jl. Ir. Sutami 36A Surakarta 57126, Central Java
(3) Biology Education Study Program, Universitas Sebelas Maret. Jl. Ir. Sutami 36A Surakarta 57126, Central Java
(4) Biology Education Study Program, Universitas Sebelas Maret. Jl. Ir. Sutami 36A Surakarta 57126, Central Java
(5) Faculty of Biology, Universitas Jenderal Soedirman, Jl dr. Suparno 63 Purwokerto 53122, Central Java
(6) Biology Education Study Program, Universitas Sebelas Maret. Jl. Ir. Sutami 36A Surakarta 57126, Central Java
(*) Corresponding Author

Abstract


The abundant volume of coffee bean pulp as a  by-product of the post-harvest processing is an important source of soil organic matter if it is properly handled. The alternative way to use coffee bean pulp waste to reduce the impact of environmental pollution is composting. This study aims to determine the ability of actinomycetes to degrade coffee pulp, to identify the physical and chemical characteristics of coffee pulp compost, and to evaluate the effect of coffee pulp compost on chili plant growth. The results showed that 7 isolates of actinomycetes were able to hydrolyze coffee pulp in vitro with a hydrolytic index of 1.7-3.81. The treatment of coffee pulp compost with the addition of a starter of cellulolytic actinomycetes (P2) at the end of the three-week incubation period showed the highest organic N (25 mg/kg), P (7.05 mg/kg), and K (33 mg/kg), t compared to other treatments. The effect of giving coffee pulp compost towards the growth of chili plants shows that  the coffee pulp composted with zeolite 5% (w/w) increased the height of the chili plants by 37.6%, while in coffee pulp composted by cellulolytic actinomycetes 5% (v/w) increased the number of leaves by 96% and plant biomass by 25%.  Based on the results of this research, coffee pulp compost has the potential to be used as biological fertilizer to increase plant growth, both composted by zeolite and cellulolytic actinomycetes


Keywords


Actinobacteria; coffee pulp; composting; soil nutrient

Full Text:

PDF


References

Ahmed, A. et al., 2017. Microbial β -Glucosidase : sources , production and applications. Journal of Applied & Environmental Microbiology. 5(1), pp. 31-46 doi: 10.12691/jaem-5-1-4.

Amalia, D., 2016. Penggunaan EM4 dan mol limbah tomat sebagai bioaktivator pada pembuatan kompos. Life Science, 5(1), pp. 18–24.

Bernal, M.P., Alburquerque, J. A. & Moral, R., 2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100(22), pp. 5444–5453. doi: 10.1016/j.biortech.2008.11.027.

Blok, W.J. et al., 2000. Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology, 90(3), pp. 253–259. doi: 10.1094/PHYTO.2000.90.3.253.

Bonanomi, G. et al., 2020. Organic amendments modulate soil microbiota and reduce virus disease incidence in the tomato pathosystem. Pathogens, 9(5). doi: 10.3390/pathogens9050379.

Bonilla, N. et al., 2012. Enhancing soil quality and plant health through suppressive organic amendments. Diversity, 4(4), pp. 475–491. doi: 10.3390/d4040475.

Boroujeni, M.E. et al., 2012. Enzymatic screening and random amplified polymorphic DNA fingerprinting of soil Streptomyces isolated form from Wayanad District in Kerala, India. Journal of Biological Science, 12(1), pp. 43–50.

Brunerová, A. et al., 2019. Sustainable management of coffee fruit waste biomass in ecological farming systems at West Lampung, Indonesia. IOP Conference Series: Earth and Environmental Science, 345(1), pp. 0–10. doi: 10.1088/1755-1315/345/1/012007.

Badan Pusat Statistik, 2018. Indonesian Coffee Statistics 2018. Badan Pusat Statistik-Statistics Indonesia.

Chinakwe, E.C. et al., 2019. Effect of temperature changes on the bacterial and fungal succession patterns during composting of some organic wastes in greenhouse. Journal of Advances in Microbiology, 15(1), , pp. 1–10. doi: 10.9734/jamb/2019/v15i130075.

El-Tarabily, K.A., 2008. Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant and Soil, 308(1–2), pp. 161–174. doi: 10.1007/s11104-008-9616-2.

Fatmawati, U. et al., 2019. Screening and characterization of actinomycetes isolated from soybean rhizosphere for promoting plant growth. Biodiversitas, 20(10), pp. 2970–2977. doi: 10.13057/biodiv/d201027.

Ferbiyanto, A., Rusmana, I. & Raffiudin, R., 2015. Characterization and identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. HAYATI Journal of Biosciences, 22(4), pp. 197–200. doi: 10.1016/j.hjb.2015.07.001.

Getahun, T. et al., 2012. Effect of turning frequencies on composting biodegradable municipal solid waste quality. Resources, Conservation and Recycling, 65, pp. 79–84. doi: 10.1016/j.resconrec.2012.05.007.

Gopalakrishnan, S. et al., 2013. Plant growth-promoting activities of Streptomyces spp. in sorghum and rice. SpringerPlus, 2(1), pp. 1–8. doi: 10.1186/2193-1801-2-574.

Hanafiah, K. A., 2005. Dasar-dasar Ilmu Tanah. Jakarta: Rajawali Pers.

Hoitink, H. & Boehm, M., 1999. Biocontrol within the context of soil microbial communities : a substrate dependent phenomeneon. Annual Review of Phytopathology, 37, pp. 427–446.

Huang, G.F. et al., 2004. Effect of C/N on composting of pig manure with sawdust. Waste Management, 24(8), pp. 805–813. doi: 10.1016/j.wasman.2004.03.011.

Ilvo, A.F.A. et al., 2020. Compost quality indicators. Soilcom, (October), pp.1-23.

Javoreková, S. et al., 2019. Soil amended with organic fertilizers as a source of actinomycetes with high potential as biocontrol agents. Journal of Microbiology, Biotechnology and Food Sciences, 8(6), pp. 1352–1359. doi: 10.15414/jmbfs.2019.8.6.1352-1359.

Khamna, S. et al., 2010. Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsian Journal of Biosciences. 4, pp. 23–32. doi: 10.5053/ejobios.2010.4.0.4.

Khatoon, H. et al., 2017. Role of microbes in organic carbon decomposition and maintenance of soil ecosystem. International Journal of Chemical Studies, 5(6), pp. 1648–1656. Available at: http://www.chemijournal.com/archives/2017/vol5issue6/PartW/5-6-133-734.pdf.

Klingel, T. et al., 2020. A review of coffee by-products including leaf. Foods, 9, pp. 1–20.

Kurniasih, W. et al., 2017. Utilization of zeolite as a media of acclimatization to optimize growth of Phalaenopsis sp. hybrid abstract. Bioma : Jurnal Ilmiah Biologi, 6(2), pp. 29–41. doi: 10.26877/bioma.v6i2.1713.

Lucitawati, E., Rezagama, A. & Samudro, G., 2018. Penentuan variasi rasio C/N optimum sampah sampuran (dedaunan dan sisa makanan) terhadap kinerja compost solid phase microbial fuel cells (CSMFC). Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik Lingkungan, 15(2), p. 100. doi: 10.14710/presipitasi.v15i2.100-105.

Raaijmakers, J.M. & Mazzola, M., 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology, 50, pp. 403–424. doi: 10.1146/annurev-phyto-081211-172908.

Sadeghi, A. et al., 2012. Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World Journal of Microbiology and Biotechnology, 28(4), pp. 1503–1509. doi: 10.1007/s11274-011-0952-7.

Saini, A. et al., 2015. Actinomycetes: a source of lignocellulolytic enzymes’. Enzyme Research, 2015. doi: 10.1155/2015/279381.

Setyorini, D., 2006. Kompos’, in Pupuk Organik dan Pupuk Hayati. Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, p. 312. Available at: http://repository.pertanian.go.id/bitstream/handle/123456789/9394/Pupuk Organik dan Pupuk Hayati.pdf?sequence=1&isAllowed=y.

Soeka, Y.S., Suharna, N. & Triana, E., 2019. Characterization of cellulase enzyme produced by two selected strains of Streptomyces macrosporeus isolated from soil in Indonesia. Makara Journal of Science, 23(2), pp. 65–71. doi: 10.7454/mss.v23i2.11043.

Soudejani, H.T. et al., 2019. Application of zeolites in organic waste composting: A review. Biocatalysis and Agricultural Biotechnology, 22(May), p. 101396. doi: 10.1016/j.bcab.2019.101396.

Sundari, I., Maruf, W.F. & Dewi, E.N., 2014. The utilization of EM4 bioactivator and fish flour to the specifications of liquid organic Gracilaria sp. seaweed fertilizer. Jurnal Pengolahan dan Bioteknologi Hasil Perikanan, 3(3), pp. 88–94.

Surtinah, 2013. Pengujian kandungan unsur hara dalam kompos yang berasal dari serasah tanaman jagung manis ( Zea mays saccharata ). Jurnal Ilmiah Pertanian, 11(1), pp. 16–25.

Taufik, I.I. & Guntarti, A., 2016. Comparison of reduction sugar analysis method in cilembu sweet potato (Ipomoea batatas l.) using luff schoorl and anthrone method. Indonesian Journal of Medicine and Health, 7(5), pp. 219–226.

Wahyono, S., 2011. Dinamika perubahan temperatur dan reduksi volume limbah dalam proses pengomposan (studi kasus pengomposan di RPH Cakung – Jakarta Timur). Jurnal Teknologi Lingkungan, 9(3). doi: 10.29122/jtl.v9i3.469.

Wahyudi, A.T. et al., 2019. Streptomyces spp. from rhizosphere soil of maize with potential as plant growth promoter. Biodiversitas, 20(9), pp. 2547–2553. doi: 10.13057/biodiv/d200916.

Widyanto, A. et al., 2013. The effect of zeolite application and urea fertilizer on growth and result of sweet corn (Zea mays L. saccharata Sturt.). Jurnal Produksi Tanaman. 1(4), pp. 378–388.

Widyotomo, S., 2013. Potensi dan teknologi diversifikasi limbah kopi menjadi produk bermutu dan bernilai tambah. Review Penelitian Kopi dan Kakao, 1(1), pp. 63–80.



DOI: https://doi.org/10.22146/jtbb.69274

Article Metrics

Abstract views : 730 | views : 520

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)