The Protective Effect of Gynura procumbens Adventitious Root against Lead Acetate Toxicity in Mice

https://doi.org/10.22146/jtbb.69453

Sugiharto Sugiharto(1*), Dwi Winarni(2), Ufairanisa Islamatasya(3), Abdul Hakim Muhsyi(4), Ahimsa Buena Merpati(5), Yosephine Sri Wulan Manuhara(6)

(1) Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Mulyorejo, Surabaya, East Java 60115; Biotechnology of Tropical Medicinal Plants Research Group, Faculty of Science and Technology, Universitas Airlangga, Mulyorejo, Surabaya, East Java 60115
(2) Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Mulyorejo, Surabaya, East Java 60115
(3) Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Mulyorejo, Surabaya, East Java 60115
(4) Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Mulyorejo, Surabaya, East Java 60115
(5) Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Mulyorejo, Surabaya, East Java 60115
(6) Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Mulyorejo, Surabaya, East Java 60115; Biotechnology of Tropical Medicinal Plants Research Group, Faculty of Science and Technology, Universitas Airlangga, Mulyorejo, Surabaya, East Java 60115
(*) Corresponding Author

Abstract


Lead induced oxidative stress contributes to increase the productivity of reactive oxygen species (ROS) and to disrupt the antioxidant balance. Gynura procumbens adventitious root (GPAR) methanol extract contains abundant phenolic and flavonoids compounds as antioxidants and can be used as traditional medicinal plants. The objective of this study is to evaluate the protective effect of GPAR against lead acetate toxicity in mice to haematological parameter, histological of hepatic cells, and activities of antioxidant enzymes. The data obtained from five groups of treatment: P1 (control), P2 (Pb acetate-100 mg/L), P3 (GPAR-100 mg/L + Pb acetate-100 mg/L), P4 (GPAR-200 mg/L + Pb acetate-100 mg/L), P5 (GPAR-300 mg/L + Pb acetate-100 mg/L). The results indicated that administration of methanol extract of GPAR can prevent the decreasing of haematological parameter, maintain the percentage of normal hepatic cells, activities of superoxide dismutase (SOD), and catalase (CAT) due to lead acetate treatment. The effective dose of GPAR extract was 300 mg/L. This study provides that methanol extract of G. procumbens adventitious root exerts protective effects against lead acetate toxicity in mice.

 


Keywords


adventitious root of Gynura procumbens; antioxidant enzymes; hepatic cells; lead; hematological profile

Full Text:

PDF


References

Akan, Z. & Garip, A.I., 2013. Antioxidants may protect cancer cells from apoptosis signals and enhance cell viability. Asian Pacific Journal of Cancer Prevention, 14(8), pp.4611–4614. doi:10.7314/APJCP.2013.14.8.4611.

Andjelkovic, M. et al., 2019. Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. International Journal of Environmental Research and Public Health, 16(2), pp.1-21. doi:10.3390/ijerph16020274.

Assi, M.A. et al., 2016. The detrimental effects of lead on human and animal health. Veterinary World, 9(6), pp.660–671. doi:10.3390/ijerph16020274.

Carocho, M. & Ferreira, I.C.F.R., 2013. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, 51(1), pp.15–25. doi: 10.1016/j.fct.2012.09.021.

Chaichana, C. et al., 2019. A novel anti-cancer peptide extracted from Gynura pseudochina rhizome: Cytotoxicity dependent on disulfide bond formation. International Journal of Peptide Research and Therapeutics, 25(2), pp.769–777. doi:10.1007/s10989-018-9726-5

Ercal, N.B.S.P. et al., 2005. Toxic metals and oxidative stress part I: Mechanisms involved in metal induced oxidative damage. Current Topics in Medicinal Chemistry, 1(6), pp.529–539. doi:10.2174/1568026013394831.

Faizah, H. et al., 2018. Biomass and flavonoid production of Gynura procumbens (L.). Merr adventitious root culture in baloon-type bubble-bioreactor influenced by elicitation. Asian Journal of Plant Sciences, 17(2), pp.107–119. doi:10.3923/AJPS.2018.107.119.

Haouas, Z. et al., 2014. Hepatotoxic effects of lead acetate in rats: Histopathological and cytotoxic studies. Journal of Cytology & Histology, 05(05), pp.1-6. doi:10.4172/2157-7099.1000256.

Krishnan, V. et al., 2015. Antioxidant potential in different parts and callus of Gynura procumbens and different parts of Gynura bicolor. BioMed Research International, 2015, pp.1-7. doi:10.1155/2015/147909.

Kumar, G.P. et al., 2015. Evaluation of different carbon sources for high frequency callus culture with reduced phenolic secretion in cotton (Gossypium hirsutum L.) cv. SVPR-2. Biotechnology Reports, 7, pp.72–80. doi:10.1016/j.btre.2015.05.005.

Manuhara, Y.S.W. et al., 2019. Enhancement of flavonoid production of Gynura procumbens (Lour.) Merr adventitious roots in baloon-type bubble bioreactor influenced by phenylalanine and tyrosine. Ecology, Environment and Conservation, 25, pp.S61–S66.

Mauliku, N.E. & Gustian, A., 2019. Effects of lead exposure on hepatocyte cells in mice (Mus musculus), in 3rd Int. Seminar on Global Health, Technology Transformation in Healthcare for a Better Life. pp. 128-133.

Metwally, S.A.M., 2015. Anatomical and histological study of the effect of lead on hepatocytes of albino rats. International Journal of Biomedical Materials Research, 3(4), p.34. doi: 10.11648/j.ijbmr.20150304.11.

Mudipalli, A., 2007. Lead hepatotoxicity & potential health effects. Indian Journal of Medical Research, 126(6), pp.518–527.

Naqi, S.Z., 2015. A comparative study of the histological changes in cerebral cortex, hippocampus, cerebellum, pons & medulla of the albino rat due to lead toxicity. International Journal of Anatomy and Research, 3(2), pp.1173–1178. doi: 10.16965/ijar.2015.194.

Patra, R.C. et al., 2011. Oxidative stress in lead and cadmium toxicity and its amelioration. Veterinary Medicine International, 2011, pp.1-9. doi:10.4061/2011/457327.

Pramita, A.D. et al., 2018. Production of biomass and flavonoid of Gynura procumbens (Lour.) Merr shoots culture in temporary immersion system. Journal of Genetic Engineering and Biotechnology, 16(2), pp.639–643. doi:10.1016/j.jgeb.2018.05.007.

Puangpronpitag, D. et al., 2010. Evaluation of nutritional value and antioxidative properties of the medicinal plant Gynura procumbens extract. Asian Journal of Plant Sciences, 9 (3), pp.146-151. doi:10.3923/ajps.2010.146.151.

Sharma, S. & Singh, B., 2014. Effects of acute and chronic lead exposure on kidney lipid peroxidation and antioxidant enzyme activities in Balb-C mice (Mus musculus). Int. J. Sci. Res, 3(9), pp.2012–2015.

Sipos, P. et al., 2003. Some effects of lead contamination on liver and gallbladder bile. Acta Biologica Szegediensis, 47(1–4), pp.139–142.

Sugiharto, et al., 2019a. Evaluation of antioxidant properties of curcumin for the management of lead exposed in mice. Pollution Research, 38, pp.S177–S182.

Sugiharto, et al., 2019b. Antioxidant activities of curcumin to MDA blood serum concentration and lead levels in liver of mice. Malaysian Journal of Science, 38(3), pp.21–29. doi:10.22452/mjs.sp2019no3.3.

Sugiharto, et al., 2020a. The comparison toxicity effects of lead and cadmium exposure on hematological parameters and organs of mice. Ecology, Environment and Conservation, 26(4), pp.1842–1846.

Sugiharto, et al., 2020b. The effects of lead acetate exposure on blood component and kidney: the mechanism of oxidative stress. Ecology, Environment and Conservation, 26, pp.S65–S69.

Sugiharto, et al., 2021. Comparison of antioxidant potential of Gynura procumbens adventitious root in vitro culture and ex vitro. Ecology, Environment and Conservation, 27(4), pp.1880–1884.

Tan, H.L. et al., 2016. Gynura procumbens: An overview of the biological activities. Frontiers in Pharmacology, 7(52), pp.1-14. doi:10.3389/fphar.2016.00052.

Teoh, W.Y. et al., 2013. Antioxidant capacity, cytotoxicity, and acute oral toxicity of Gynura bicolor. Evidence-based Complementary and Alternative Medicine, 2013, pp.8–10. doi: 10.1155/2013/958407.

Terao, J., 2009. Dietary flavonoids as antioxidants. Forum of Nutrition, 61, pp.87–94. doi: 10.1159/000212741.

Wang, H. et al., 2013. Gynura procumbens ethanolic extract suppresses osteosarcoma cell proliferation and metastasis in vitro. Oncology Letters, 6(1), pp.113–117. doi: 10.3892/ol.2013.1315.

Wani, A.L. et al., 2015. Lead toxicity: A review. Interdisciplinary Toxicology, 8(2), pp.55–64. doi:10.1515/intox-2015-0009.

Yuniarti, W.M. et al., 2021. The protective effect of Ocimum sanctum leaf extract against lead acetate-induced nephrotoxicity and hepatotoxicity in mice (Mus musculus). Veterinary World, 14(1), pp.250–258. doi:10.14202/vetworld.2021.250-258.



DOI: https://doi.org/10.22146/jtbb.69453

Article Metrics

Abstract views : 2149 | views : 1931

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)