Pharmacological Maneuver of Mangrove Endophytic Fungi in the South China Sea – A review

https://doi.org/10.22146/jtbb.69913

Manjula Muthu Narayanan(1), Pooja Shivanand(2*), Norhayati Ahmad(3)

(1) Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jln. Tungku Link BE1410, Bandar Seri Begawan, Brunei Darussalam.
(2) Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jln. Tungku Link BE1410, Bandar Seri Begawan, Brunei Darussalam.
(3) Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jln. Tungku Link BE1410, Bandar Seri Begawan, Brunei Darussalam.
(*) Corresponding Author

Abstract


Conventional products have a role in addressing the thriving universal demands for biologically active substances. Since the South China Sea is a prodigious province of geostrategic and mercantile importance, it meets the basic needs of people who dwell there. The South China Sea is dominant in mangrove biodiversity which, represents 11.4% of the world’s 15.5 million hectares of mangrove forest. Mangroves are harbored by multifaceted fungal communities that represent the second colossal ecological breed of marine fungi. The symbiotic association between the plants and fungi stimulates the bioactive components such as alkaloid, depsipeptides, cyclic peptides, quinone, terpenes, lactones, terpenoid, flavonoid, phenolic acid, steroids. These components have multifaceted pharmacological activities likely, anti-inflammatory, antidiabetic, anticancer, antioxidant, and antimicrobial. This review article attempts to present a piece of insightful information currently being explored on the biologically active components generated by mangrove endophytic fungi of the South China Sea.


Keywords


Biological activities; mangrove endophytic fungi; metabolites; South China sea

Full Text:

PDF


References

Anon, 2008. United Nations UNEP/GEF South China Sea Global Environment Environment Programme Project Facility “Reversing Environmental Degradation Trends in the South China Sea and Gulf of Thailand” National Reports on Mangroves in South China Sea, Available at: http://www.unepscs.org [Accessed January 20, 2022].

Bai, M. et al., 2019. Two new secondary metabolites from a mangrove-derived fungus Cladosporium sp. JS1-2. Journal of Antibiotics, 72(10), pp.779–782. doi: 10.1038/s41429-019-0206-8.

Bibi, S.N. et al., 2020. Fungal endophytes associated with mangroves – Chemistry and biopharmaceutical potential. South African Journal of Botany, 134, pp.187–212. doi: 10.1016/j.sajb.2019.12.016.

Cai, R., Chen, S., Liu, Z., et al., 2017. A new α-pyrone from the mangrove endophytic fungus Phomopsis sp. HNY29-2B. Natural Product Research, 31(2), pp.124–130. doi: 10.1080/14786419.2016.1214833.

Cai, R., Chen, S., Long, Y., et al., 2017. Depsidones from Talaromyces stipitatus SK-4, an endophytic fungus of the mangrove plant Acanthus ilicifolius. Phytochemistry Letters, 20, pp.196–199. doi: 10.1016/j.phytol.2017.04.023.

Cai, R., Jiang, H., Zang, Z., et al., 2019. New benzofuranoids and phenylpropanoids from the mangrove endophytic fungus, Aspergillus sp. ZJ-68. Marine Drugs, 17(8). doi: 10.3390/md17080478.

Cai, R., Jiang, H., Mo, Y., et al., 2019. Ophiobolin-Type sesterterpenoids from the mangrove endophytic fungus Aspergillus sp. ZJ-68. Journal of Natural Products, 82(8), pp.2268–2278. doi: 10.1021/acs.jnatprod.9b00462.

Cai, R. et al., 2018. Peniisocoumarins A-J: Isocoumarins from Penicillium commune QQF-3, an endophytic fungus of the mangrove plant Kandelia candel. Journal of Natural Products, 81(6), pp.1376–1383. doi: 10.1021/acs.jnatprod.7b01018.

Chen, H. et al., 2018. Phochrodines A–D, first naturally occurring new chromenopyridines from mangrove entophytic fungus Phomopsis sp. 33#. Fitoterapia, 124, pp.103–107. doi: 10.1016/j.fitote.2017.10.013.

Chen, S. et al., 2018. Anti-inflammatory meroterpenoids from the mangrove endophytic fungus Talaromyces amestolkiae YX1. Phytochemistry, 146, pp.8–15. doi: 10.1016/j.phytochem.2017.11.011.

Chen, S., Liu, Z., et al., 2017. Lasiodiplactone A, a novel lactone from the mangrove endophytic fungus Lasiodiplodia theobromae ZJ-HQ1. Organic and Biomolecular Chemistry, 15(30), pp.6338–6341. doi: 10.1039/c7ob01657c.

Chen, S., He, L., et al., 2017. Talaramide A, an unusual alkaloid from the mangrove endophytic fungus: Talaromyces sp. (Hz-YX1) as an inhibitor of mycobacterial PknG. New Journal of Chemistry, 41(11), pp.4273–4276. doi: 10.1039/c7nj00059f.

Chen, Y., Zhang, L., et al., 2020. Anti-inflammatory activities of alkaloids from the mangrove endophytic fungus Phomopsis sp. SYSUQYP-23. Bioorganic Chemistry, 97. doi: 10.1016/j.bioorg.2020.103712.

Chen, Y., Liu, Z., et al., 2019. Ascomylactams A-C, Cytotoxic 12- or 13-Membered-ring macrocyclic alkaloids isolated from the mangrove endophytic fungus Didymella sp. CYSK-4, and structure revisions of Phomapyrrolidones A and C. Journal of Natural Products, 82(7), pp.1752–1758. doi: 10.1021/acs.jnatprod.8b00918.

Chen, Y., Yang, W., et al., 2019. Bioactive polyketides from the mangrove endophytic fungi Phoma sp. SYSU-SK-7. Fitoterapia, 139. doi: 10.1016/j.fitote.2019.104369.

Chen, Y., Liu, H., et al., 2021. Bioactive sesquiterpene derivatives from mangrove endophytic fungus Phomopsis sp. SYSU-QYP-23: Structures and nitric oxide inhibitory activities. Bioorganic Chemistry, 107. doi: 10.1016/j.bioorg.2020.104530.

Chen, Y. et al., 2018. Dichloroisocoumarins with potential anti-inflammatory activity from the mangrove endophytic fungus Ascomycota sp. CYSK-4. Marine Drugs, 16(2). doi: 10.3390/md16020054.

Chen, Y., Zou, G., et al., 2021. Metabolites with anti-inflammatory activity from the mangrove endophytic fungus Diaporthe sp. QYM12. Marine drugs, 19(2). doi: 10.3390/md19020056.

Chen, Y., Yang, W., et al., 2020. Metabolites with anti-inflammatory and α-glucosidase inhibitory activities from the mangrove endophytic fungus Phoma sp. SYSU-SK-7. Tetrahedron Letters, 61(48), p.152578. doi: 10.1016/j.tetlet.2020.152578.

Cheung, J. et al., 2012. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry, 55(22), pp.10282–10286. doi: 10.1021/jm300871x.

Cui, H., Yu, J., et al., 2017. Alkaloids from the mangrove endophytic fungus Diaporthe phaseolorum SKS019. Bioorganic and Medicinal Chemistry Letters, 27(4), pp.803–807. doi: 10.1016/j.bmcl.2017.01.029.

Cui, H., Liu, Y., et al., 2017. New pyranonaphthazarin and 2-naphthoic acid derivatives from the mangrove endophytic fungus Leptosphaerulina sp. SKS032. Phytochemistry Letters, 20, pp.214–217. doi: 10.1016/j.phytol.2017.05.010.

Cui, H. et al., 2016. Polyketides from the mangrove-derived endophytic fungus Nectria sp. HN001 and their α-glucosidase inhibitory activity. Marine Drugs, 14(5). doi: 10.3390/md14050086.

Darsih, C. et al., 2017. A new polyketide from the endophytic fungus Penicillium chermesinum. Indonesian Journal of Chemistry, 17(3), pp.360–364. doi: 10.22146/ijc.22273.

Das, S.K., Samantray, D. & Thatoi, H.N., 2018. Pharmacological applications of metabolites of mangrove endophytes: A review. In Microbial Biotechnology. Springer, Singapore, pp. 331–360. doi: 10.1007/978-981-10-7140-9_16.

Ding, B. et al., 2016. Bioactive α-pyrone meroterpenoids from mangrove endophytic fungus Penicillium sp. Natural Product Research, 30(24), pp.2805–2812. doi: 10.1080/14786419.2016.1164702.

FAO, 2007. The world’s mangroves 1980-2005. FAO Forestry Paper, 153, p.89. Available at: https://www.fao.org/3/a1427e/a1427e00.htm [Accessed January 20, 2022].

Gong, B. et al., 2018. Antibacterial and antitumor potential of actinomycetes isolated from mangrove soil in the Maowei sea of the southern coast of China. Iranian Journal of Pharmaceutical Research, 17(4), pp.1339–1346. doi: 10.22037/ijpr.2018.2280.

Guo, H.X. et al., 2020. New furo[3,2-h]isochroman from the mangrove endophytic fungus Aspergillus sp. 085242. Chinese Journal of Natural Medicines, 18(11), pp.855–859. doi: 10.1016/S1875-5364(20)60028-0.

Hao, L. et al., 2020. A new depsidone derivative from mangrove endophytic fungus Aspergillus sp. GXNU-A9. Natural Product Research. doi: 10.1080/14786419.2020.1809400.

Hou, B. et al., 2021. New diterpenoids and isocoumarin derivatives from the mangrove-derived fungus Hypoxylon sp. Marine Drugs, 19(7). doi: 10.3390/md19070362.

Huang, H. et al., 2017. A new antibacterial chromone derivative from mangrove-derived fungus Penicillium aculeatum (No. 9EB). Natural Product Research, 31(22), pp.2593–2598. doi: 10.1080/14786419.2017.1283498.

Huang, J. et al., 2017. New lasiodiplodins from mangrove endophytic fungus Lasiodiplodia sp. 318#. Natural Product Research, 31(3), pp.326–332. doi: 10.1080/14786419.2016.1239096.

Jiang, C.S. et al., 2018. Antibacterial sorbicillin and diketopiperazines from the endogenous fungus Penicillium sp. GD6 associated Chinese mangrove Bruguiera gymnorrhiza. Chinese Journal of Natural Medicines, 16(5), pp.358–365. doi: 10.1016/S1875-5364(18)30068-2.

Ju, Z.R. et al., 2016. New phenyl derivatives from endophytic fungus Botryosphaeria sp. SCSIO KcF6 derived of mangrove plant Kandelia candel. Natural Product Research, 30(2), pp.192–198. doi: 10.1080/14786419.2015.1050670.

Kuzhalvaymani, K., E. and S.T.S., 2020. Endophytic fungi from mangroves – review. International Journal of Pharmaceutical Sciences and Research, 11(9), pp.4134–4143. doi: 10.13040/IJPSR.0975-8232.11(9).4134-43.

Van De Laar, F.A. et al., 2005. α-Glucosidase inhibitors for patients with type 2 diabetes: Results from a Cochrane systematic review and meta-analysis. Diabetes Care, 28(1), pp.154–163. doi: 10.2337/diacare.28.1.154.

Li, W.S. et al., 2019. Phomopsols A and B from the mangrove endophytic fungus Phomopsis sp. xy21: structures, neuroprotective effects, and biogenetic relationships. Organic Letters, 21(19), pp.7919–7922. doi: 10.1021/acs.orglett.9b02906.

Li, X.B. et al., 2017. A new biphenyl derivative from the mangrove endophytic fungus Phomopsis longicolla HL-2232. Natural Product Research, 31(19), pp.2264–2267. doi: 10.1080/14786419.2017.1300799.

Liu, H. et al., 2016. Polyketides with immunosuppressive activities from mangrove endophytic fungus Penicillium sp. ZJ-SY2. Marine Drugs, 14(12). doi: 10.3390/md14120217.

Liu, Y. et al., 2016. Altenusin derivatives from mangrove endophytic fungus: Alternaria sp. SK6YW3L. RSC Advances, 6(76), pp.72127–72132. doi: 10.1039/c6ra16214b.

Liu, Z., Liu, H., et al., 2018. A new anti-inflammatory meroterpenoid from the fungus Aspergillus terreus H010. Natural Product Research, 32(22), pp.2652–2656. doi: 10.1080/14786419.2017.1375924.

Liu, Z., Qiu, P., et al., 2018. Anti-inflammatory polyketides from the mangrove-derived fungus Ascomycota sp. SK2YWS-L. Tetrahedron, 74(7), pp.746–751. doi: 10.1016/j.tet.2017.12.057.

Long, Y. et al., 2017. Acetylcholinesterase inhibitory meroterpenoid from a mangrove endophytic fungus Aspergillus sp. 16-5c. Molecules, 22(5). doi: 10.3390/molecules22050727.

Mei, R.Q. et al., 2021. Bioactive isocoumarins isolated from a mangrove-derived fungus Penicillium sp. MGP11. Natural Product Research. doi: 10.1080/14786419.2021.1873981.

Perera, W.H. et al., 2019. Bioassay-guided isolation and structure elucidation of fungicidal and herbicidal compounds from Ambrosia salsola (Asteraceae). Molecules, 24(5). doi: 10.3390/molecules24050835.

Pizzino, G. et al., 2017. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017. doi: 10.1155/2017/8416763.

Qi, X. et al., 2019. GKK1032C, a new alkaloid compound from the endophytic fungus Penicillium sp. CPCC 400817 with activity against methicillin-resistant S. aureus. Journal of Antibiotics, 72(4), pp.237–240. doi: 10.1038/s41429-019-0144-5.

Qiu, L. et al., 2018. New eudesmane-type sesquiterpenoids from the mangrove-derived endophytic fungus Penicillium sp. J-54. Marine Drugs, 16(4). doi: 10.3390/md16040108.

Qiu, P. et al., 2019. Secondary metabolites with α-Glucosidase inhibitory activity from the mangrove fungus Mycosphaerella sp. SYSU-DZG01. Marine Drugs, 17(8). doi: 10.3390/md17080483.

Qiu, P. et al., 2020. Three new isocoumarin derivatives from the mangrove endophytic fungus Penicillium sp. YYSJ-3. Chinese Journal of Natural Medicines, 18(4), pp.256–260. doi: 10.1016/S1875-5364(20)30031-5.

Salini, G., 2015. Pharmacological profile of mangrove endophytes – A Review. Int. J. Pharm Pharm Sci.,, 7(6–15). Available at: https://innovareacademics.in/journals/index.php/ijpps/article/view/3648/pdf_464.

Sridhar, K.R., 2019. Diversity, ecology, and significance of fungal endophytes. Springer Nature Switzerland AG, S. Jha (ed), endophytes and secondary metabolites, references series in phytochemistry. In S. Jha (ed.), Endophytes and Secondary Metabolites, Reference Series in Phytochemistry.

Tan, C. et al., 2016. Antioxidative Polyketones from the Mangrove-Derived Fungus Ascomycota sp. SK2YWS-L. Scientific Reports, 6. doi: 10.1038/srep36609.

Thatoi, H., Mishra, R.R. & Behera, B.C., 2020. Biotechnological potentials of halotolerant and halophilic bacteria from mangrove ecosystems. In Biotechnological Utilization of Mangrove Resources. Academic Press, pp. 413–433. doi: 10.1016/b978-0-12-819532-1.00020-2.

Tomlinson, P.B., 1994. The botany of mangroves. Cambridge University Press, Cambridge.

Vo, S.T., Pernetta, J.C. & Paterson, C.J., 2013. Status and trends in coastal habitats of the South China Sea. Ocean and Coastal Management, 85, pp.153–163. doi: 10.1016/j.ocecoaman.2013.02.018.

Wang, L. et al., 2018. Polyketides from the endophytic fungus Cladosporium sp. isolated from the mangrove plant Excoecaria agallocha. Frontiers in Chemistry, 6(AUG). doi: 10.3389/fchem.2018.00344.

Wang, P. et al., 2018. Phenolic bisabolane sesquiterpenoids from a Thai mangrove endophytic fungus, Aspergillus sp. xy02. Fitoterapia, 127, pp.322–327. doi: 10.1016/j.fitote.2018.02.031.

Wang, P. et al., 2019. Two new succinimide derivatives cladosporitins A and B from the mangrove-derived fungus Cladosporium sp. HNWSW-1. Marine Drugs, 17(1). doi: 10.3390/md17010004.

Wang, Y. et al., 2021. Two new pyrone derivatives from the mangrove-derived endophytic fungus Aspergillus sydowii #2B. Natural Product Research, pp.1–7. doi: 10.1080/14786419.2021.1892673.

Wei, C. et al., 2020. Cytospyrone and Cytospomarin: Two new polyketides isolated from mangrove endophytic fungus, Cytospora sp. †. Molecules, 25(18). doi: 10.3390/molecules25184224.

Wei, N. et al., 2021. Rapid screening and identification of antitumor ingredients from the mangrove endophytic fungus using an enzyme-immobilized magnetic nanoparticulate system. Molecules, 26(8). doi: 10.3390/molecules26082255.

Wu, J.T. et al., 2019. Two new secondary metabolites from a mangrove-derived fungus Cladosporium sp. JJM22. Natural Product Research, 33(1), pp.34–40. doi: 10.1080/14786419.2018.1431634.

Wu, Y. et al., 2019. Cytotoxic isocoumarin derivatives from the mangrove endophytic fungus Aspergillus sp. HN15-5D. Archives of Pharmacal Research, 42(4), pp.326–331. doi: 10.1007/s12272-018-1019-1.

Wu, Y. et al., 2018. α-Glucosidase Inhibitors: Diphenyl ethers and phenolic bisabolane sesquiterpenoids from the mangrove endophytic fungus Aspergillus flavus QQSG-3. Marine drugs, 16(9). doi: 10.3390/MD16090307.

Xu, Z. et al., 2020. Pestalotiopisorin B, a new isocoumarin derivative from the mangrove endophytic fungus Pestalotiopsis sp. HHL101. Natural Product Research, 34(7), pp.1002–1007. doi: 10.1080/14786419.2018.1539980.

Yan, Z. et al., 2019. The purification, characterization, and biological activity of new polyketides from mangrove-derived endophytic fungus Epicoccum nigrum SCNU-F0002. Marine Drugs, 17(7). doi: 10.3390/md17070414.

Yang, L.J. et al., 2018. One new cytochalasin metabolite isolated from a mangrove-derived fungus Daldinia eschscholtzii HJ001. Natural Product Research, 32(2), pp.208–213. doi: 10.1080/14786419.2017.1346641.

Yang, W. et al., 2020. Benzopyran derivatives and an aliphatic compound from a mangrove endophytic fungus Penicillium citrinum QJF-22. Chemistry and Biodiversity, 17(6). doi: 10.1002/cbdv.202000192.

Yang, W. et al., 2021. Secondary metabolites with α-glucosidase inhibitory activity from mangrove endophytic fungus Talaromyces sp. Cy-3. Marine Drugs, 19(9), p.492. doi: 10.3390/md19090492.

Zhang, B. et al., 2021. Bioactive cyclohexene derivatives from a mangrove-derived fungus Cladosporium sp. JJM22. Fitoterapia, 149. doi: 10.1016/j.fitote.2020.104823.

Zhang, F.Z. et al., 2019. Polyketides from the mangrove-derived endophytic fungus Cladosporium cladosporioides. Marine Drugs, 17(5). doi: 10.3390/md17050296.

Zhang, L. et al., 2018. α-Glucosidase inhibitory and cytotoxic botryorhodines from mangrove endophytic fungus Trichoderma sp. 307. Natural Product Research, 32(24), pp.2887–2892. doi: 10.1080/14786419.2017.1385023.

Zhang, M. et al., 2016. Two new diterpenoids from the endophytic fungus Trichoderma sp. Xy24 isolated from mangrove plant Xylocarpus granatum. Chinese Chemical Letters, 27(6), pp.957–960. doi: 10.1016/j.cclet.2016.02.008.

Zheng, C.J. et al., 2016. A new benzopyrans derivatives from a mangrove derived fungus Penicillium citrinum from the South China Sea. Natural Product Research, 30(7), pp.821-825. doi:10.1080/14786419.2015.1072712.

Zheng, C.J. et al., 2019. Two new benzophenones and one new natural amide alkaloid isolated from a mangrove-derived fungus Penicillium citrinum. Natural Product Research, 33(8), pp.1127–1134. doi: 10.1080/14786419.2018.1460832.

Zhou, D. et al., 2020. A new sesquiterpene from mangrove endophytic fungus Aspergillus sp. GXNU-MA1. Natural Product Research. doi: 10.1080/14786419.2020.1824225.

Zou, G. et al., 2021. Furobenzotropolones A, B and 3-hydroxyepicoccone b with antioxidative activity from mangrove endophytic fungus Epicoccum nigrum MLY-3. Marine Drugs, 19(7). doi: 10.3390/md19070395.

Zou, R. et al., 2021. Alkaloids from endophytic fungus Aspergillus fumigatus HQD24 isolated from the Chinese mangrove plant Rhizophora mucronata. Natural Product Research, pp.1–5. doi: 10.1080/14786419.2021.1916017.



DOI: https://doi.org/10.22146/jtbb.69913

Article Metrics

Abstract views : 1251 | views : 707

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)