Population structure and habitat preference of cave crickets (Rhaphidophora sp. (Orthoptera: Rhaphidophoridae)) in Sanghyang Kenit cave, Citatah karst area, West Java
Isma Dwi Kurniawan(1*), Rahmat Taufiq Mustahiq Akbar(2), Risda Arba Ulfa(3), Mentari Kusuma Wardani(4), Birama Satria(5)
(1) Department of Biology, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl. A.H. Nasution No. 105, Cibiru, Bandung, 40614; Indonesian Speleological Society, Ruko BSD Sektor IV Blok RD No.71, Lengkong Wetan, BSD City, 15322
(2) Department of Biology, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl. A.H. Nasution No. 105, Cibiru, Bandung, 40614
(3) Department of Biology, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl. A.H. Nasution No. 105, Cibiru, Bandung, 40614
(4) Department of Biology, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl. A.H. Nasution No. 105, Cibiru, Bandung, 40614
(5) Department of Biology, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl. A.H. Nasution No. 105, Cibiru, Bandung, 40614
(*) Corresponding Author
Abstract
Cave crickets are considered as a keystone species that can be used as a cave ecosystem bioindicator. Developing caves as tourism has considerable potential to disturb cave cricket populations. This study aimed to investigate cave cricket population structure and their habitat preference in Sanghyang Kenit cave one year after it developed into a show cave. Data were collected through standardized visual searching in three cave zones: entrance, twilight, and dark. Besides cave crickets, other macroarthropods discovered in each zone were also recorded. Abiotic parameters of habitat comprised air and soil temperatures, RH, soil moisture, soil pH, and light intensity were measured. Data were analyzed to show cave crickets abundance, density, sex ratio, and age structure. Statistical analysis comprising Kruskal Wallis, non-metric multidimensional scaling, and correlation tests were performed. The cave cricket population in Sanghyang Kenit belonged to a single species, Rhaphidophora sp. The population was around 78-108 individuals and distributed in all cave zones. The abundance and density in twilight and dark zones were significantly higher than in the entrance. The number of males outperformed females with a 2.16 ratio. Besides, the population was dominated by the sub-adult class. Environmental parameters of twilight and dark zones tended to be similar to one another compared to the entrance. Cave crickets preferred habitats with dark, humid, and acidic soil pH. Heteropoda sp. and Catagaeus sp. were considered potential predators. This study implies the importance of protecting cave crickets in Sanghyang Kenit.
Keywords
Full Text:
PDFReferences
Allegrucci, G. et al., 2010. Cave crickets and cave weta (Orthoptera, Rhaphidophoridae) from the Southern End of the World: A molecular phylogeny test of biogeographical hypotheses. Journal of Orthoptera Research, 19(1), pp.121–130. doi: 10.1665/034.019.0118.
Benoit, J.B. et al., 2004. Mycoflora of a trogloxenic cave cricket, Hadenoecus cumberlandicus (Orthoptera: Rhaphidophoridae), from two small caves in Northeastern Kentucky. Annals of the Entomological Society of America, 97(5), pp.989–993. doi: 10.1603/0013-8746(2004)097[0989:MOATCC]2.0.CO;2.
Bernardini, C. & Di Russo, C., 2004. A general model for the life cycle of Dolichopoda cave crickets (Orthoptera: Rhaphidophoridae). European Journal of Entomology, 101(1), pp.69–73. doi: 10.14411/eje.2004.015.
Carchini, G., Russo, C.D. & Sbordoni, V., 1991. Contrasting age structures in cave cricket populations: patterns and significance. Ecological Entomology, 16, pp.305–314. doi: 10.1111/j.1365-2311.1991.tb00221.x.
Carchini, G., Rampini, M. & Sbordoni, V., 1994. Life cycle and population ecology of the cave cricket Dolichopoda geniculata (Costa) from Valmarino cave (Central Italy). International Journal of Speleology, 23(3/4), pp.203–218. doi: 10.5038/1827-806x.23.3.6.
Chandoo, M. et al., 2013. Frequency of missing legs in the cave cricket, Hadenoecus subterraneus. Scientia Discipulorum, 6, pp.56–61.
Conroy, L.P. & Gray, D.A., 2015. Male armaments and reproductive behavior in “Nutcracker” camel crickets (Rhaphidophoridae, Pristoceuthophilus). Insects, 6(1), pp.85–99. doi: 10.3390/insects6010085.
Culver, D.C. & Pipan, T., 2009. The Biology of Caves and Other Subterranean Habitats, New York: Oxford University Press.
Culver, D.C. & White, W.B., 2012. Encyclopedia of Caves Second Edition 2nd ed., USA: Elsevier Academic Press.
Deharveng, L. & Bedos, A., 2012. Diversity Patterns in The Tropics. In W. B. White & D. C. Culver, eds. Encyclopedia of Caves. China: Academic Press, pp. 238–250.
Epps, M.J. et al., 2014. Too big to be noticed: Cryptic invasion of Asian camel crickets in North American houses. PeerJ, 2014(1), pp.1–15. doi: 10.7717/peerj.523.
Fea, M. & Holwell, G., 2018. Combat in a cave-dwelling wētā (Orthoptera: Rhaphidophoridae) with exaggerated weaponry. Animal Behaviour, 138, pp.85–92. doi: 10.1016/j.anbehav.2018.02.009.
Fernandez-Cortes, A. et al., 2011. Detection of human-induced environmental disturbances in a show cave. Environmental Science and Pollution Research, 18(6), pp.1037–1045. doi: 10.1007/s11356-011-0513-5.
Ferreira, R.L., 2019. Guano communities. In W. B. White, D. C. Culver, & T. Pipan, eds. Encyclopedia of Caves (Third Edition). Academic Press, pp. 474–484. doi: 10.1016/b978-0-12-814124-3.00057-1.
Furey, N.M. & Racey, P.A., 2016. Conservation Ecology of Cave Bats. In C. V. Christian & T. Kingston, eds. Bats in the anthropocene: Conservation of bats in a changing world. Switzerland: Springer, pp. 463–500. doi: 10.1007/978-3-319-25220-9.
Hasibuan, R.S. & Lidiawati, I., 2020. Potential Study of Sibiuk Cave as a directive for special interest tourism in Ciampea District , Bogor. , (2012), pp.623–635.
Hidayaturrohmah, N., Hernawati, D. & Chaidir, D.M., 2021. Keanekaragaman Arthropoda Berdasarkan 3 Zona Pencahayaan Di Gua Sarongge Tasikmalaya. BIOTIK: Jurnal Ilmiah Biologi Teknologi dan Kependidikan, 8(2), pp.245–258. doi: 10.22373/biotik.v8i2.7778.
Howarth, F.G. & Moldovan, O.T., 2018a. The Ecological Classification of Cave Animals and Their Adaptations. In Oana T. Moldovan, L. Kovac, & S. Halse, eds. Caves Ecology. Switzerland: Springer, pp. 41–67.
Howarth, F.G. & Moldovan, O.T., 2018b. Where Cave Animals Live. In Oana Teodora Moldovan, L. Kovac, & S. Halse, eds. Caves Ecology. Switzerland: Springer, pp. 23–37.
Hu, C., Yang, J. & Tu, W., 2014. Antennal epicuticular structure of camel crickets (Orthoptera: Rhaphidophoridae) for identifying the prey of Mustella sibrica Pallas. Advances in Entomology, 02(01), pp.1–7. doi: 10.4236/ae.2014.21001.
Ingrisch, S. & Rentz, D.C.F., 2009. Orthroptera. In V. H. Resh & R. T. Carde, eds. Encyclopedia of Insect. USA: Academic Press, pp. 732–743.
Iskali, G. & Zhang, Y., 2015. Guano subsidy and the invertebrate community in bracken cave: The world’s largest colony of bats. Journal of Cave and Karst Studies, 77(1), pp.28–36. doi: 10.4311/2013LSC0128.
Kovac, L., 2018. Caves as Oligotrophic Ecosystem. In O. T. Moldovan, L. Kovac, & S. Halse, eds. Caves Ecology. Switzerland: Springer, pp. 297–307.
Kurniawan, I.D. et al., 2017. The Detection of Human Activities’ Impact on Show Caves Environment in Pacitan, Indonesia. In S. Moore, Kevin; White, ed. Proceedings of the 17th International Congress of Spelology. Sydney, pp. 175–178.
Kurniawan, I.D. et al., 2018a. The difference on Arthropod communities ’ structure within show caves and wild caves in Gunungsewu Karst area , Indonesia. Ecology, Environment and Conservation, 24(1), pp.72–81.
Kurniawan, I.D. et al., 2018b. Cave-dwelling Arthropod community of Semedi Show Cave in Gunungsewu Karst Area , Pacitan , East Java , Indonesia. Biodiversitas, 19(3), pp.857–866. doi: 10.13057/biodiv/d190314.
Kurniawan, I.D. & Rahmadi, C., 2019. Ekologi Gua Wisata: Dampak Aktivitas Wisata terhadap Lingkungan dan Biota Gua serta Upaya Konservasinya, Yogyakarta: Graha Ilmu.
Kurniawan, I.D. et al., 2020. Correspondence between bats population and terrestrial cave-dwelling arthropods community in Tasikmalaya karst area. Communications in Mathematical Biology and Neuroscience, 2020(59), pp.1–21. doi: https://doi.org/10.28919/cmbn/4830.
Lavoie, K.H., Helf, K.L. & Poulson, T.L., 2007. The biology and ecology of North American cave crickets. Journal of Cave and Karst Studies, 69(1), pp.114–134.
Lizarro, D. et al., 2020. Characterization of caves as bat roosts in the brazilian-paranense biogeographic region of bolivia. Therya, 11(3), pp.390–397. doi: 10.12933/therya-20-1008.
Lucañas, C.C. & Lit, I.L., 2016. Cockroaches (Insecta, Blattodea) from caves of Polillo Island (Philippines), with description of a new species. Subterranean Biology, 19(1), pp.51–64. doi: 10.3897/subtbiol.19.9804.
Mammola, S., 2019. Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography, 42(July), pp.1331–1351. doi: 10.1111/ecog.03905.
Mazebedi, R. & Hesselberg, T., 2020. A preliminary survey of the abundance, diversity and distribution of terrestrial macroinvertebrates of Gcwihaba cave, northwest Botswana. Subterranean Biology, 35, pp.49–63. doi: 10.3897/subtbiol.35.51445.
Moulds, T., 2004. Review of Australian cave guano ecosystems with a checklist of guano invertebrates. Proceedings of the Linnean Society of New South Wales, 125(January), pp.1–42.
Mulyani, E., 2011. Produksi, Konsumsi Semen Dan Bahan Bakunyadi Indonesia Periode 1997 – 2009 Dan Prospeknya 2010 – 2015. Jurnal Teknologi Mineral dan Batubara, 7(2), pp.82–89.
Newman, B.A., Loeb, S.C. & Jachowski, D.S., 2021. Winter roosting ecology of tricolored bats (Perimyotis subflavus) in trees and bridges. Journal of Mammalogy, 102(5), pp.1331–1341. doi: 10.1093/jmammal/gyab080.
Oksanen, J. et al., 2020. Package ‘vegan.’ Community Ecology Package, pp.1–298. Available at: https://cran.r-project.org/web/packages/vegan/vegan.pdf [Accessed August 31, 2021].
Pacheco, G.S.M. et al., 2020. Tourism effects on the subterranean fauna in a Central American cave. Insect Conservation and Diversity, 2020(September), pp.1–13. doi: 10.1111/icad.12451.
Prakarsa, T.B.P. & Ahmadin, K., 2017. Diversitas Arthropoda Gua di kawasan Karst Gunung Sewu, Studi gua-gua di Kabupaten Wonogiri. BIOTROPIC The Journal of Tropical Biology, 1(2), pp.31–36. doi: 10.29080/biotropic.2017.1.2.31-36.
Prakarsa, T.B.P., Kurniawan, I.D. & Putro, S.T.J., 2021. Biospeleologi: Biodiversitas Gua, Potensi, dan Permasalahannya, Yogyakarta: Bintang Pustaka Madani.
Prous, X., Ferreira, R.L. & Jacobi, C.M., 2015. The entrance as a complex ecotone in a Neotropical cave. International Journal of Speleology, 44(2), pp.177–189. doi: 10.5038/1827-806X.44.2.7.
Rahmadi, C., 2002. Keanekaragaman Arthropoda di Gua Ngerong, Tuban, Jawa Timur. Zoo Indonesia, 29, pp.19–27.
Rahmadi, C. & Suhardjono, Y.R., 2007. Arthropoda Gua di Nusakambangan Cilacap, Jawa Tengah. Zoo Indonesia, 16(1), pp.21–29.
Rahmadi, C., 2011. Biospeleologi of java caves, Indonesia: a Review. In E. Haryono, T. N. Adjie, & Suratman, eds. Asian Trans-Disciplinary Karst Conference 2011. Yogyakarta, pp. 241–250.
Ravn, N.R., Michelsen, A. & Reboleira, A.S.P.S., 2020. Decomposition of Organic Matter in Caves. Frontiers in Ecology and Evolution, 8(October), pp.1–12. doi: 10.3389/fevo.2020.554651.
Romero, A., 2009. Cave Biology Life in Darkness, New York: Cambridge University Press.
Di Russo, C. & Rampini, M., 2017. A new species of the genus Rhaphidophora from Seram island (Moluccas, Indonesia) with notes on the geographic distribution of the subfamily Rhaphidophorinae (Orthoptera, Rhaphidphoridae) Claudio. International Journal of Entomology Research, 2(2), pp.55–58.
Slatyer, R.A. et al., 2012. Estimating genetic benefits of polyandry from experimental studies: A meta-analysis. Biological Reviews, 87(1), pp.1–33. doi: 10.1111/j.1469-185X.2011.00182.x.
Song, H. et al., 2020. Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. Nature Communications, 11(1), pp.1–16. doi: 10.1038/s41467-020-18739-4.
Stritih, N. & Čokl, A., 2012. Mating Behaviour and Vibratory Signalling in Non-Hearing Cave Crickets Reflect Primitive Communication of Ensifera. PLoS ONE, 7(10), pp.1–10. doi: 10.1371/journal.pone.0047646.
Subekti, T., 2016. Konflik Samin vs PT. Semen Indonesia. Jurnal Transformative, 2(2), pp.189–202. Available at: https://transformative.ub.ac.id/index.php/jtr/article/view/136.
Tobin, B.W., Hutchins, B.T. & Schwartz, B.F., 2013. Spatial and temporal changes in invertebrate assemblage structure from the entrance to deep-cave zone of a temperate marble cave. International Journal of Speleology, 42(3), pp.203–214. doi: 10.5038/1827-806X.42.3.4.
Vahed, K., 2015. Cryptic Female Choice in Crickets and Relatives (Orthoptera: Ensifera). In A. V. Peretti & A. Ainseberg, eds. Cryptic Female Choice in Arthropods. Springer International Publishing, pp. 285–324. doi: 10.1007/978-3-319-17894-3_11.
Wei, T. & Simko, V., 2021. An Introduction to corrplot Package. Package ‘corrplot’, pp.1–26. Available at: https://cran.r-project.org/web/packages/corrplot/corrplot.pdf [Accessed July 13, 2022].
Wynne, J.J. et al., 2019. Fifty years of cave arthropod sampling: Techniques and best practices. International Journal of Speleology, 48(1), pp.33–48. doi: 10.5038/1827-806X.48.1.2231.
Yoder, J.A. et al., 2010. The pheromone of the cave cricket, Hadenoecus cumberlandicus, causes cricket aggregation but does not attract the co-distributed predatory spider, Meta ovalis. Journal of Insect Science, 10(1), pp.1–10. doi: 10.1673/031.010.4701.
DOI: https://doi.org/10.22146/jtbb.73051
Article Metrics
Abstract views : 2644 | views : 1931Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)