Comparison of Light Intensity under the Canopy between Sal (Shorea robusta) and Akashmoni (Acacia auriculiformis) in Agroforestry Stands: Effect of Tree Size and Distance from Individual Trees

https://doi.org/10.22146/jtbb.78063

Md. Al Forhad Islam(1), Md. Najmus Sayadat Pitol(2*), Md. Nabiul Islam Khan(3)

(1) Forestry and Wood Technology Discipline, Khulna University, Khulna-9208, Bangladesh.
(2) Mangrove Silviculture Division, Bangladesh Forest Research Institute, Muzgunni, Khulna-9000, Bangladesh.
(3) Forestry and Wood Technology Discipline, Khulna University, Khulna-9208, Bangladesh.
(*) Corresponding Author

Abstract


Agroforestry is now inevitable for meeting the snowballing demand for food of the growing number of people worldwide. The light environment is the most important driving force for the growth and development of crops in agroforestry stand. The present study aims to quantify the light interception in two different agroforestry types, where one was composed of Shorea robusta (Sal) with Ananas comosus and another was Acacia auriculiformis (Akashmoni) with Ananas comosus. The relative Photosynthetically Active Radiation (PAR) was measured by a pair of quantum sensors in four directions from some individual trees. Spatial variation of PAR was also explored in both stand types. The results revealed that RPAR did not significantly (P>0.05) vary among four directions of individual trees in S. robusta but the A. auriculiformis showed a significant difference (P<0.001) along the four directions. Also, RPAR was significantly different (P<0.001) at different distances from individual trees under the canopy of both tree species. When the stand-level spatial variation of RPAR was considered, A. auriculiformis (0.177) and S. robusta (0.171) showed no significant difference (P>0.05) in the light environment. Our findings explored that both the tree species would be suitable species for agroforestry practices in the area. For the betterment of the natural S. robusta forest responsible authorities should encourage people to avoid A. auriculiformis plantations near the natural S. robusta forest which will enhance the conservation of S. robusta cover in its natural habitat.

 


Keywords


agroforestry; canopy; interception; light environment; RPAR

Full Text:

PDF


References

A.K.M. Azad, A.K., Pitol, M.N.S. & Hara, Y., 2021. The role of Rubber (Hevea brasiliensis) plantation in carbon storage at Bandarbans Hill Tract, Bangladesh. Int. J of Curr. Res, 13, (05), pp.17373-17377. doi: 10.24941/ijcr.41365.05.2021

Alam, B. et al., 2018. Different genotypes of Dalbergia sissoo trees modified microclimate dynamics differently on understory crop cowpea (Vigna unguiculata) as assessed through ecophysiological and spectral traits in agroforestry system. Agricultural and Forest Meteorology, 249, pp.138-148. doi: 10.1016/j.agrformet.2017.11.031

Branca, G. et al., 2013. Food security, climate change, and sustainable land management. A review. Agron. Sustain. Dev, 33, pp.635–650. doi: 10.1007/s13593-013-0133-1

Ceotto, E. et al., 2013. Comparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo donax L.) and sweet sorghum (Sorghum bicolor L. Moench). Field Crops Research, 149, pp.159-166. doi: 10.1016/j.fcr.2013.05.002

Chave, J. et al., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, pp.87-99. doi: 10.1007/s00442-005-0100-x

Chave, J. et al., 2009. Towards a worldwide wood economics spectrum. Ecology letters, 12(4), pp.351-366. doi: 10.1111/j.1461-0248.2009.01285.x

Cohen, S. et al., 1997. Response of citrus trees to modified radiation regime in semi-arid conditions. Journal of Experimental Botany, 48(1), pp.35-44. doi: 10.1093/jxb/48.1.35

Denslow, J.S. & Guzman, S., 2000. Variation in stand structure, light and seedling abundance across a tropical moist forest chronosequence, Panama. Journal of Vegetation Science, 11, pp.201-212. doi: 10.2307/3236800

Du, X. et al., 2015. Effect of cropping system on radiation use efficiency in double-cropped wheat–cotton. Field Crops Research, 170, pp.21-31. doi: 10.1016/j.fcr.2014.09.013

Dufour, L. et al., 2013. Assessing light competition for cereal production in temperate agroforestry systems using experimentation and crop modelling. Journal of agronomy and crop science, 199(3), pp.217-227. doi: 10.1111/jac.12008

Duursma, R. A. & Mäkelä, A., 2007. Summary models for light interception and light-use efficiency of non-homogeneous canopies. Tree physiology, 27(6), pp.859-870. doi: 10.1093 treephys/27.6.859

Fageria, N.K., Baligar, V.C. & Jones, C.A., 2011. Growth and mineral nutrition of field crops, 3rd ed. Boca Raton, FL, USA: CRC Press

FAO., 2006. World agriculture: towards 2030/2050 prospects for food, nutrition, agriculture and major commodity groups. Rome: FAO. https://www.fao.org/3/ap106e/ap106e.pdf

Foley, J.A. et al., 2011. Solutions for a cultivated planet. Nature, 478(7369), pp.337-342. doi: 10.1038/nature10452

Forrester, D.I., 2014. A stand-level light interception model for horizontally and vertically heterogeneous canopies. Ecological Modelling, 276, pp.14-22. doi: 10.1016/j.ecolmodel.2013.12.021

Gao, Y. et al., 2010. Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agronomy journal, 102(4), pp.1149-1157. doi: 10.2134/agronj2009.0409

George, S.J. et al., 2013. A sustainable agricultural landscape for Australia: a review of interlacing carbon sequestration, biodiversity and salinity management in agroforestry systems. Agric. Ecosyst. Environ, 163, pp.28–36. doi: 10.1016/j.agee.2012.06.022

Gold, M.A., 2017. Agroforestry. Encyclopedia Britannica, inc. https://www.britannica.com/science/agroforestry

Horn, H.S., 1971. The adaptive geometry of trees (No. 3). Princeton University Press.

Khan, M.N.I. et al., 2004. Interception of photosynthetic photon flux density in a mangrove stand of Kandelia candel (L.) Druce. Journal of forest research, 9(3), pp.205-210. doi: 10.1007/s10310-003-0074-7

Klančnik, K. & Gaberščik, A., 2015. Leaf spectral signatures differ in plant species colonizing habitats along a hydrological gradient. J. Plant. Ecol., 9, pp.442-450. doi: 10.1093/jpe/rtv068

Li, F. et al., 2008. Light distribution, photosynthetic rate and yield in a Paulownia-wheat intercropping system in China. Agroforestry Systems, 74, pp.163-172. doi: 10.1007/s10457-008-9122-9

Licker, R. et al., 2010. Mind the gap: how do climate and agricultural management explain the ‘yield gap’of croplands around the world? Global ecology and biogeography, 19(6), pp.769-782. doi: 10.1111/j.1466-8238.2010.00563.x

Liu, S. et al., 2021. Importance of the description of light interception in crop growth models. Plant Physiology, 186(2), pp.977-997. doi: 10.1093/plphys/kiab113

Mariscal, M.J. et al., 2004. Light-transmission profiles in an old-growth forest canopy: simulations of photosynthetically active radiation by using spatially explicit radiative transfer models. Ecosystems, 7, pp.454-467. doi: 10.1007/s10021-004-0137-4

Marshall, B. & Willey, R.W., 1983. Radiation interception and growth in an intercrop of pearl millet/groundnut. Field Crops Res., 7(83), pp.141–160. doi: 10.1016/0378-4290(83)90018-7

Montgomery, R.A. & Chazdon, R.L., 2001. Forest structure, canopy architecture, and light transmittance in tropical wet forests. Ecology, 82, pp.2707-2718. doi: 10.2307/2679955

Munz, S. et al., 2014. Modeling light availability for a subordinate crop within a strip–intercropping system. Field Crops Res., 155, pp.77-89. doi: 10.1016/j.fcr.2013.09.020

Nair, P.K.R., Kumar, B.M. & Nair, V.D., 2009. Agroforestry as a strategy for carbon sequestration. J. Soil Sci. Plant Nut., 172(1), pp.10-23. doi: 10.1002/jpln.200800030

Nicotra, A.B., Chazdon, R.L. & Iriarte, S.V., 1999. Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology, 80, pp.1908-1926. doi: 10.1890/0012-9658(1999)080[1908:SHOLAW]2.0.CO;2

Nishat, A. et al., 2002. Bio-ecological zones of Bangladesh. Dhaka (Bangladesh): IUCN Bangladesh Country Office. pp.54–55.

Nurunnahar., Pitol, M.N.S. & Sharmin, A., 2020. Status and Prospects of Agroforestry at Kaligonj Upazila in Satkhira District. European Journal of Agriculture and Food Sciences, 2(6). doi: 10.24018/ejfood.2020.2.6.186

Orchard, A.E. & Wilson, A.J.G., 2001. Flora of Australia: Vol. 11b, Mimosaceae, Acacia part 2, Melbourne, AU: ABRS, Canberra/CSIRO Publishing.

Pitol, M.N.S. & Mian, M.B., 2023. High carbon storage and oxygen (O2) release potential of Mahagony (Swietenia macrophylla) woodlot plantation in Bangladesh. Saudi Journal of Biological Sciences, 30(1), 103498. doi: 10.1016/j.sjbs.2022.103498

Pitol, M.N.S., Khan, M.Z. & Khatun, R., 2019. Assessment of Total Carbon Stock in Swietenia macrophylla Woodlot at Jhenaidah District in Bangladesh. Asian Journal of Research in Agriculture and Forestry, 2(3), 1-10. doi: 10.9734/AJRAF/2018/46922

R Core Team., 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.

Rahaman, M.T., Gurung, D.B. & Pitol, M.N.S., 2020. Comparative Study of Understory between Exotic Monoculture Plantation (Acacia Sp.) and Adjacent Natural Sal (Shorea Robusta) Forest. European Journal of Agriculture and Food Sciences, 2(6), pp.1-9 doi: 10.24018/ejfood.2020.2.6.204

Rahman, M.R., Hossain, M.K. & Hossain, M.A., 2019. Diversity and composition of tree species in Madhupur national park, tangail, Bangladesh. Journal of forest and environmental science, 35(3), pp.159-172. doi: 10.7747/JFES.2019.35.3.159

Rahman, M., Nishat, A. & Vacik, H., 2009. Anthropogenic disturbances and plant diversity of the Madhupur Sal forests (Shorea robusta C.F. Gaertn) of Bangladesh. International Journal of Biodiversity Science & Management, 5, pp.162-173. doi: 10.1080/17451590903236741

Rahman, M.R. et al., 2017. Floristic composition of Madhupur National Park (MNP), Tangail, Bangladesh. Bangladesh Agriculture, 7(10), pp.27-45.

Rivest, D. et al., 2009. Production of soybean associated with different hybrid poplar clones in a tree-based intercropping system in southwestern Québec, Canada. Agriculture, ecosystems & environment, 131, pp.51-60. doi: 10.1016/j.agee.2008.08.011

Safa, M.S., 2004. The effect of participatory forest management on the livelihood and poverty of settlers in a rehabilitation program of degraded forest in Bangladesh. Small-scale Forest Economics, Management and Policy, 3, pp.223-238. doi: 10.1007/s11842-004-0016-z

Schleppi, P. et al., 2007. Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agricultural and Forest Meteorology, 144(3-4), pp.236-242. doi: 10.1016/j.agrformet.2007.02.004

Schroth, G. and da Mota, M.D.S.S., 2013. Technical and institutional innovation in agroforestry for protected areas management in the Brazilian Amazon: opportunities and limitations. Environmental management, 52(2), pp.427-440. doi: 10.1007/s00267-013-0049-1

Sharma, M. et al., 2019. Morphological anomaly in Shorea robusta Gaertn. Seeds in Uttarakhand, India. Indian Forester, 145(5), pp.492-493. doi: 10.36808/if/2019/v145i5/145690



DOI: https://doi.org/10.22146/jtbb.78063

Article Metrics

Abstract views : 852 | views : 534

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)