Profiling of Single Garlic Extract Microencapsulation: Characterization, Antioxidant Activity, and Release Kinetic

https://doi.org/10.22146/jtbb.79072

Sri Rahayu Lestari(1*), Abdul Ghofur(2), Siti Imroatul Maslikah(3), Sunaryono Sunaryono(4), Amalia Nur Rahma(5), Dahniar Nur Aisyah(6), Ikfi Nihayatul Mufidah(7), Nadiya Dini Rifqi(8), Nenes Prastita(9), Dewi Sekar Miasih(10), Alif Rosyidah El Baroroh(11)

(1) Department of Biology, Faculty of Mathematics and Natural Sciences, Malang State University, Malang, East Java, Indonesia. Jl. Semarang, No.05, Sumbersari, Lowokwaru, Malang, Indonesia
(2) Department of Biology, Faculty of Mathematics and Natural Sciences, Malang State University, Malang, East Java, Indonesia. Jl. Semarang, No.05, Sumbersari, Lowokwaru, Malang, Indonesia
(3) Department of Biology, Faculty of Mathematics and Natural Sciences, Malang State University, Malang, East Java, Indonesia. Jl. Semarang, No.05, Sumbersari, Lowokwaru, Malang, Indonesia
(4) Department of Physics, Faculty of Mathematics and Natural Sciences, Malang State University, Malang, East Java, Indonesia. Jl. Semarang, No.05, Sumbersari, Lowokwaru, Malang, Indonesia
(5) Department of Biology, Faculty of Mathematics and Natural Sciences, Malang State University, Malang, East Java, Indonesia. Jl. Semarang, No.05, Sumbersari, Lowokwaru, Malang, Indonesia
(6) Department of Biology, Faculty of Mathematics and Natural Sciences, Malang State University, Malang, East Java, Indonesia. Jl. Semarang, No.05, Sumbersari, Lowokwaru, Malang, Indonesia
(7) Department of Biology, Faculty of Mathematics and Natural Sciences, Malang State University, Malang, East Java, Indonesia. Jl. Semarang, No.05, Sumbersari, Lowokwaru, Malang, Indonesia
(8) Department of Biology, Faculty of Mathematics and Natural Sciences, Malang State University, Malang, East Java, Indonesia. Jl. Semarang, No.05, Sumbersari, Lowokwaru, Malang, Indonesia
(9) Department of Biology, Faculty of Mathematics and Natural Sciences, Malang State University, Malang, East Java, Indonesia. Jl. Semarang, No.05, Sumbersari, Lowokwaru, Malang, Indonesia
(10) Department of Biology, Faculty of Mathematics and Natural Sciences, Malang State University, Malang, East Java, Indonesia. Jl. Semarang, No.05, Sumbersari, Lowokwaru, Malang, Indonesia
(11) Department of Biology, Faculty of Mathematics and Natural Sciences, Malang State University, Malang, East Java, Indonesia. Jl. Semarang, No.05, Sumbersari, Lowokwaru, Malang, Indonesia
(*) Corresponding Author

Abstract


Single garlic is known to have many benefits as an alternative therapy for various types of metabolic syndrome. The bioactive compounds, allicin and alliin, in garlic are unstable and easily degraded in digestion. Chitosan-alginate microencapsulation is thought to increase stability and protect active compound so its therapeutic effect is more optimal. This study aimed to characterize the microencapsulation chitosan-alginate of single garlic extract (MCA- SGE), as well as to examine the antioxidant activity and kinetic release of MCA-SGE in vitro. The research procedure includes the steps of single garlic extraction, preparation of MCA-SGE, characterization of MCA-SGE (PSA, SEM, and FTIR) as well as biological testing of MCA-SGE through antioxidant activity and kinetic release tests. PSA results showed the mean particle size of MCA-SGE was 439.0 ± 1.9 nm or 0.4 m with a polydispersity index (PDI) value of 0.579 ± 0.046 and a zeta potential value of 15.4 ± 0.3 mV. The SEM results showed that the morphology of MCA-SGE was spherical with a smooth surface and a micrometre size of 0.4 - 0.7 µm. The FTIR results describe a shift in absorption and addition of SGE functional groups after encapsulation. The results of the antioxidant activity test showed the antioxidant activity of MCA-SGE was 65%, while SGE was 55%. The results of the kinetic release showed that more allicin and alliin were released by SGE than MCA-SGE during the 4-hour kinetic release simulation. MCA-SGE has the potential to be used as a drug delivery system with controlled release.


Keywords


Microencapsulation, Chitosan-alginate, Single garlic extract

Full Text:

PDF


References

Abbaspour-Gilandeh, Y. et al., 2021. Combined hot air, microwave, and infrared drying of hawthorn fruit: Effects of ultrasonic pretreatment on drying time, energy, qualitative, and bioactive compounds’ properties. Foods, 10(5). doi: 10.3390/foods10051006.

Abdel-Gawad, M. et al., 2018. in Vitro Antioxidant, Total Phenolic and Flavonoid Contents of Six Allium Species Growing in Egypt. Journal of Microbiology, Biotechnology and Food Sciences, 8(2), pp.343–346.

Akhter, M.H. et al., 2022. Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System. Gels, 8(2). doi: 10.3390/gels8020082.

Aleksandra Zielińska et al., 2020. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules, 25, p.3731. doi: 10.3390/molecules25163731

Alencar, D.D. de O. et al., 2022. Microencapsulation of Cymbopogon citratus D.C. Stapf Essential Oil with Spray Drying: Development, Characterization, and Antioxidant and Antibacterial Activities. Foods, 11(8). doi: 10.3390/foods11081111.

Amiri, N. et al., 2021. Nanoencapsulation (in vitro and in vivo) as an efficient technology to boost the potential of garlic essential oil as alternatives for antibiotics in broiler nutrition. Animal, 15(1), 100022. doi: 10.1016/j.animal.2020.100022.

Avelelas, F. et al., 2019. Antifungal and antioxidant properties of chitosan polymers obtained from nontraditional Polybius henslowii sources. Marine Drugs, 17(4), pp.1–15. doi: 10.3390/md17040239.

Aziz, S.A.A. et al., 2013. Effect of Zeta Potential of Stanum Oxide (SnO2) on Electrophoretic Deposition (EPD) on Porous Alumina. Advanced Materials Research, 795, pp.334–337. doi: 10.4028/www.scientific.net/AMR.795.334.

Bagheri, R. et al., 2016. Comparing the effect of encapsulated and unencapsulated fennel extracts on the shelf life of minced common kilka (Clupeonella cultriventris caspia) and Pseudomonas aeruginosa inoculated in the mince. Food Science and Nutrition, 4(2), pp.216–222. doi: 10.1002/fsn3.275.

Baltrusch, K.L. et al., 2022. Spray-drying microencapsulation of tea extracts using green starch, alginate or carrageenan as carrier materials. International Journal of Biological Macromolecules, 203, pp.417–429. doi: 10.1016/j.ijbiomac.2022.01.129.

Bhatwalkar, S.B. et al., 2021. Antibacterial Properties of Organosulfur Compounds of Garlic (Allium sativum). Frontiers in Microbiology, 12(July), pp.1–20. doi: 10.3389/fmicb.2021.613077.

Borlinghaus, J. et al., 2014. Allicin: chemistry and biological properties. Molecules (Basel, Switzerland), 19(8), pp.12591–12618. doi: 10.3390/molecules190812591.

Buanasari, Sugiyo, W. & Rustaman, H., 2021. Preparation and evaluation of plant extract microcapsules using Chitosan. IOP Conference Series: Earth and Environmental Science, 755(1). doi: 10.1088/1755-1315/755/1/012063.

Chopra, M. et al., 2012. Synthesis and Optimization of Streptomycin Loaded Chitosan-Alginate Nanoparticles. International Journal of Scientific & Technology Research, 1(10), pp.31–34.

Choudhury, N., Meghwal, M. & Das, K., 2021. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers, 2(4), pp.426–442. doi: 10.1002/fft2.94.

Danaei, M. et al., 2018. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), 57. doi: 10.3390/pharmaceutics10020057.

Dima, C. et al., 2013. Microencapsulation of coriander oil using complex coacervation method. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 14(3), pp.155–162.

Divya, B. et al., 2017. A Study on Phytochemicals, Functional Groups and Mineral Composition of Allium sativum (Garlic) Cloves. doi: 10.22159/ijcpr.2017v9i3.18888.

Fei, X. et al., 2015. Microencapsulation mechanism and size control of fragrance microcapsules with melamine resin shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 469, pp.300–306. doi: 10.1016/j.colsurfa.2015.01.033.

Filho, J.C.P. et al., 2019. Design of chitosan-alginate core-shell nanoparticules loaded with anacardic acid and cardol for drug delivery. Polimeros, 29(4), pp.1–10. doi: 10.1590/0104-1428.08118.

Katuwavila, N.P. et al., 2016. Chitosan-Alginate Nanoparticle System Efficiently Delivers Doxorubicin to MCF-7 Cells. Journal of Nanomaterials, 2016. doi: 10.1155/2016/3178904.

Krisanti, E., Aryani, S.D. & Mulia, K., 2017. Effect of chitosan molecular weight and composition on mucoadhesive properties of mangostin-loaded chitosan-alginate microparticles. AIP Conference Proceedings, 1817. doi: 10.1063/1.4976766.

Kurnia, D. et al., 2021. Antioxidant properties and structure-antioxidant activity relationship of allium species leaves. Molecules, 26(23), pp.1–28. doi: 10.3390/molecules26237175.

Kyriakoudi, A. et al., 2021. Innovative delivery systems loaded with plant bioactive ingredients: Formulation approaches and applications. Plants, 10(6), pp.1–56. doi: 10.3390/plants10061238.

Kyzioł, A. et al., 2017. Preparation and characterization of alginate/chitosan formulations for ciprofloxacin-controlled delivery. Journal of Biomaterials Applications, 32(2), pp.162–174. doi: 10.1177/0885328217714352.

Lengyel, M. et al., 2019a. Microparticles, microspheres, and microcapsules for advanced drug delivery. Scientia Pharmaceutica, 87(3). doi: 10.3390/scipharm87030020.

Lengyel, M. et al., 2019b. Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Scientia Pharmaceutica, 87(3), pp.1–31.

Lestari, S.R. & Rifa’i, M., 2018. Regulatory T cells and anti-inflammatory cytokine profile of mice fed a high-fat diet after single-bulb garlic (Allium sativum L.) oil treatment. Tropical Journal of Pharmaceutical Research, 17(11), pp.2157–2162. doi: 10.4314/tjpr.v17i11.7.

Lestari, S.R. et al., 2020. Single Garlic Oil Modulates T Cells Activation and Proinflammatory Cytokine in Mice with High Fat Diet. Journal of Ayurveda and Integrative Medicine, 11(4), pp.414–420. doi: 10.1016/j.jaim.2020.06.009.

Lestari, S.R. et al., 2021. Self-nanoemulsifying drug delivery system (SNEEDS) for improved bioavailability of active compound on single clove garlic: Optimization of PEG 400 and glycerol as co-surfactant. AIP Conference Proceedings, 2353. doi: 10.1063/5.0052638.

Loquercio, A. et al., 2015. Preparation of Chitosan-Alginate Nanoparticles for Trans-cinnamaldehyde Entrapment. Journal of Food Science, 80(10), pp.N2305–N2315. doi: 10.1111/1750-3841.12997.

Machado, N.D. et al., 2021. Preservation of the antioxidant capacity of resveratrol via encapsulation in niosomes. Foods, 10(5), pp.1–12. doi: 10.3390/foods10050988.

Merck, 2022. IR Spectrum Table & Chart.

Michen, B. et al., 2015. Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles. Scientific Reports, 5. doi: 10.1038/srep09793.

Mohammadalinejhad, S. & Kurek, M.A., 2021. Applsci-11-03936.Pdf. Applied Sciences.

Mudalige, T. et al., 2018. Characterization of Nanomaterials: Tools and Challenges.In Micro and Nano Technologies, Nanomaterials for Food Applications. Elsevier Inc. pp.313-353. doi: 10.1016/B978-0-12-814130-4.00011-7.

Nandiyanto, A.B.D., Oktiani, R. & Ragadhita, R., 2019. How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), pp.97–118. doi: 10.17509/ijost.v4i1.15806.

Natrajan, D. et al., 2015. Formulation of essential oil-loaded chitosan-alginate nanocapsules. Journal of Food and Drug Analysis, 23(3), pp.560–568. doi: 10.1016/j.jfda.2015.01.001.

Ozkan, G. et al., 2019. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272(August 2018), pp.494–506. doi: 10.1016/j.foodchem.2018.07.205.

Park, K.H. et al., 2022. Controlled Drug Release Using Chitosan-Alginate-Gentamicin Multi-Component Beads. , pp.1–13.

Pateiro, M. et al., 2021. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules, 26(6). doi: 10.3390/molecules26061547.

Patel, B.K., Parikh, R.H. & Aboti, P.S., 2013. Development of Oral Sustained Release Rifampicin Loaded Chitosan Nanoparticles by Design of Experiment. Journal of Drug Delivery, 2013, pp.1–10. doi: 10.1155/2013/370938.

Pedroso-Santana, S. & Fleitas-Salazar, N., 2020. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polymer International, 69(5), pp.443–447. doi: 10.1002/pi.5970.

Pudlarz, A. & Szemraj, J., 2018. Nanoparticles as carriers of proteins, peptides and other therapeutic molecules. Open Life Sciences, 13(1), pp.285–298. doi: 10.1515/biol-2018-0035.

Qadariah, N., Lestari, S.R. & Rohman, F., 2020. SINGLE BULB GARLIC (Allium sativum) EXTRACT IMPROVE SPERM QUALITY IN HYPERLIPIDEMIA MALE MICE MODEL. Jurnal Kedokteran Hewan - Indonesian Journal of Veterinary Sciences, 14(1), pp.7–11. doi: 10.21157/j.ked.hewan.v14i1.13562.

Rajasree, R.S. et al., 2021. An evaluation of the antioxidant activity of a methanolic extract of cucumis melo l. Fruit (f1 hybrid). Separations, 8(8), pp.1–15. doi: 10.3390/separations8080123.

Saha, P. & Das, P.S., 2015. Advances in Controlled Release Technology in Pharaceuticals: A Review. World journal of pharmacy and pharmaceutical sciences, 6(9), pp.2070–2084. doi: 10.20959/wjpps20179-10194.

dos Santos, P.P. et al., 2015. Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study. Journal of Nanoparticle Research, 17(2). doi: 10.1007/s11051-015-2917-5.

Sasi, M. et al., 2021. Garlic (Allium sativum L.) bioactives and its role in alleviating oral pathologies. Antioxidants, 10(11). doi: 10.3390/antiox10111847.

Schaich, K.M., Tian, X. & Xie, J., 2015. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. Journal of Functional Foods, 14, pp.111–125. doi: 10.1016/j.jff.2015.01.043.

Shang, A. et al., 2019. Bioactive compounds and biological functions of garlic (allium sativum L.). Foods, 8(7), pp.1–31. doi: 10.3390/foods8070246.

Singer, A. et al., 2018. Nanoscale Drug-Delivery Systems: In Vitro and In Vivo Characterization. Nanocarriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery, pp.395–419. doi: 10.1016/B978-0-12-814033-8.00013-8.

Sorasitthiyanukarn, F.N. et al., 2018. Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Materials Science and Engineering C, 93(July), pp.178–190. doi: 10.1016/j.msec.2018.07.069.

Szabó, L., Gerber-Lemaire, S. & Wandrey, C., 2020. Strategies to functionalize the anionic biopolymer na-alginate without restricting its polyelectrolyte properties. Polymers, 12(4). doi: 10.3390/POLYM12040919.

Szychowski, K.A. et al., 2018. Characterization of Active Compounds of Different Garlic (Allium sativum l.) Cultivars. Polish Journal of Food and Nutrition Sciences, 68(1), pp.73–81. doi: 10.1515/pjfns-2017-0005.

Tao, Q. et al., 2021. Ionic and enzymatic multiple‐crosslinked nanogels for drug delivery. Polymers, 13(20). doi: 10.3390/polym13203565.

Wang, F. et al., 2016. Effective method of chitosan-coated alginate nanoparticles for target drug delivery applications. Journal of Biomaterials Applications, 31(1), pp.3–12. doi: 10.1177/0885328216648478.

Waqas, M.K. et al., 2022. Alginate-coated chitosan nanoparticles for pH-dependent release of tamoxifen citrate. Journal of Experimental Nanoscience, 17(1), pp.522–534. doi: 10.1080/17458080.2022.2112919.

Yousefi, M. et al., 2020. Development, characterization and in vitro antioxidant activity of chitosan-coated alginate microcapsules entrapping Viola odorata Linn. extract. International Journal of Biological Macromolecules, 163, pp.44–54. doi: 10.1016/j.ijbiomac.2020.06.250.

Zhang, Y.H. et al., 2020. Characterization and Application of an Alginate Lyase, Aly1281 from Marine Bacterium Pseudoalteromonas carrageenovora ASY5. Marine Drugs, 18(2). doi: 10.3390/md18020095.

Zhou, P. et al., 2018. Loading BMP-2 on nanostructured hydroxyapatite microspheres for rapid bone regeneration. International Journal of Nanomedicine, 13, pp.4083–4092. doi: 10.2147/IJN.S158280.



DOI: https://doi.org/10.22146/jtbb.79072

Article Metrics

Abstract views : 783 | views : 695

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)