Trend Antimicrobial Resistance Patterns in Patients with Septic at The Intensive Care Unit : A Five years Retrospective Study

Rachmi Nurkhalika(1), Ika Puspita Sari(2*), Titik Nuryastuti(3)

(1) Magister Farmasi Klinik, Fakultas Farmasi, Universitas Gadjah Mada
(2) Departemen Farmakologi & Farmasi Klinik, Fakultas Farmasi Universitas Gadjah Mada
(3) Departemen Mikrobiologi Klinik, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan Universitas Gadjah Mada
(*) Corresponding Author


Sepsis is a potentially fatal medical condition characterized by decreased organ function, lower mortality, and increased resistance. Antibiotic resistance can develop as a result of overuse and inappropriate indications. The WHO AWaRe classification categorizes antibiotics based on their potency and potential impact on antimicrobial multidrug resistance (AMR). This classification will make it easier to organize and select antibiotics, as well as reduce the occurrence of resistance. The goal of this study was to identify the pattern of bacterial resistance to antibiotics in septic patients from 2017-2021, as categorized by the WHO AWaRe classification. This study used a descriptive, non-experimental design and was carried out at the UGM Academic Hospital. The information was collected retrospectively from the medical records of patients diagnosed with sepsis in the intensive care unit and treated between January 2017-December 2021, who fulfilled the inclusion and exclusion criteria. According to the resistance pattern between 2017-2021, the gram-negative bacteria that caused sepsis were 55 isolates. The most common bacteria causing sepsis were Pseudomonas aeruginosa and Acinetobacter baumannii. When compared to antibiotics in the reserve category (meropenem and vancomycin), antibiotics in the access category (penicillin and/or beta-lactam inhibitors and first-generation cephalosporins), experienced the most resistance.


resistance, antibiotic, septic

Full Text:



World Health Organization. Global Report on the Epidemiology and Burden of Sepsis: Current Evidence, Identifying Gaps and Future Directions. World Health Organization; 2020. Accessed June 27, 2022.

Rowe T, Araujo KLB, Van Ness PH, Pisani MA, Juthani-Mehta M. Outcomes of Older Adults With Sepsis at Admission to an Intensive Care Unit. Open Forum Infect Dis. 2016;3(1):ofw010. doi:10.1093/ofid/ofw010

Jeganathan N, Yau S, Ahuja N, et al. The characteristics and impact of source of infection on sepsis-related ICU outcomes. J Crit Care. 2017;41:170-176. doi:10.1016/j.jcrc.2017.05.019

Busch LM, Kadri SS. Antimicrobial Treatment Duration in Sepsis and Serious Infections. J Infect Dis. 2020;222(Supplement_2):S142-S155. doi:10.1093/infdis/jiaa247

Dolin HH, Papadimos TJ, Chen X, Pan ZK. Characterization of Pathogenic Sepsis Etiologies and Patient Profiles: A Novel Approach to Triage and Treatment. Microbiol Insights. 2019;12:1178636118825081. doi:10.1177/1178636118825081

Karataş M, Yaşar-Duman M, Tünger A, Çilli F, Aydemir Ş, Özenci V. Secondary bacterial infections and antimicrobial resistance in COVID-19: comparative evaluation of pre-pandemic and pandemic-era, a retrospective single center study. Ann Clin Microbiol Antimicrob. 2021;20(1):51. doi:10.1186/s12941-021-00454-7

Saini V, Jain C, Singh NP, et al. Paradigm Shift in Antimicrobial Resistance Pattern of Bacterial Isolates during the COVID-19 Pandemic. Antibiotics. 2021;10(8):954. doi:10.3390/antibiotics10080954

Founou RC, Blocker AJ, Noubom M, et al. The COVID-19 pandemic: a threat to antimicrobial resistance containment. Future Sci OA. 2021;7(8):FSO736. doi:10.2144/fsoa-2021-0012

Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801-810. doi:10.1001/jama.2016.0287

Zhou J, Qian C, Zhao M, et al. Epidemiology and Outcome of Severe Sepsis and Septic Shock in Intensive Care Units in Mainland China. PLOS ONE. 2014;9(9):e107181. doi:10.1371/journal.pone.0107181

Rhee C, Jones TM, Hamad Y, et al. Prevalence, Underlying Causes, and Preventability of Sepsis-Associated Mortality in US Acute Care Hospitals. JAMA Netw Open. 2019;2(2):e187571. doi:10.1001/jamanetworkopen.2018.7571

Wahyuni W, Nurahmi N, Rusli B. Pattern of Bacteria and Its Antibiotic Sensitivity in Sepsis Patients (Pola Kuman dan Kepekaan terhadap Antibiotik bagi Pasien Sepsis). Indones J Clin Pathol Med Lab. 2018;23(1):80-83. doi:10.24293/ijcpml.v23i1.1189

Munoz-Price LS, Weinstein RA. Acinetobacter Infection. N Engl J Med. 2008;358(12):1271-1281. doi:10.1056/NEJMra070741

Gellatly SL, Hancock REW. Pseudomonas aeruginosa : new insights into pathogenesis and host defenses. Pathog Dis. 2013;67(3):159-173. doi:10.1111/2049-632X.12033

Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645-1658. doi:10.2147/IDR.S173867

Stefani S, Chung DR, Lindsay JA, et al. Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents. 2012;39(4):273-282. doi:10.1016/j.ijantimicag.2011.09.030

Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022;399(10325):629-655. doi:10.1016/S0140-6736(21)02724-0

Ventola CL. The Antibiotic Resistance Crisis. Pharm Ther. 2015;40(4):277-283.


Article Metrics

Abstract views : 255 | views : 172


  • There are currently no refbacks.

Majalah Farmaseutik Indexed by:

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.