Evaluasi Potensi Penghambatan Ekstrak Etil Asetat Isolat Fungi Indonesia terhadap Staphylocaccus aureus ATCC 25923 dan Escherichia coli ATCC 25922

https://doi.org/10.22146/farmaseutik.v21i2.97584

Paryany Pangeran(1), Indah Purwantini(2*), Evita Chrisnayanti(3)

(1) Magister Ilmu Farmasi, Fakultas Farmasi, Universitas Gadjah Mada
(2) Departemen Biologi Farmasi, Fakultas Farmasi, Universitas Gadjah Mada Pusat Riset Tumbuhan Obat dan Bahan Alam, Fakultas Farmasi, Universitas Gadjah Mada
(3) Badan Riset dan Inovasi Nasional (BRIN)
(*) Corresponding Author

Abstract


Indonesia dengan iklim tropis menjadi tempat ideal bagi pertumbuhan fungi yang diketahui menjadi salah satu sumber senyawa bioaktif, termasuk antibiotik. Badan Riset dan Inovasi Nasional (BRIN) memiliki koleksi fungi yang diisolasi dari berbagai daerah di Indonesia dari tahun 2015 hingga 2020 yang berpotensi besar sebagai sumber senyawa antibakteri baru. Skrining aktivitas penghambatan terhadap Staphylococcus aureus dan Escherichia coli telah dilakukan untuk ekstrak etil asetat isolat fungi tersebut dengan metode difusi cakram. Sepuluh dari 22 ekstrak menunjukkan penghambatan terhadap Staphylococcus aureus dan hambatan terbesar dihasilkan oleh ekstrak F4-20 dengan diameter zona penghambatan 14,773±1,387 mm. Satu ekstrak, yaitu F4-7 menunjukkan penghambatan terhadap Escherichia coli dengan diameter zona penghambatan 9,939±0,578 mm. KLT Bioautografi dilakukan terhadap ekstrak-ekstrak yang mampu menghambat pertumbuhan kedua bakteri uji. Berdasarkan hasil KLT bioautografi diperkirakan terdapat 6 senyawa antibakteri yaitu senyawa dengan Rf 0,63 dan 0,7 (F4-2), Rf 0,46 (F4-3), Rf 0,77 (F4-11), Rf 0,43 (F4-15), Rf 0,68 (F4-20). Senyawa dengan Rf 0,7 (F4-2) teridentifikasi sebagai senyawa diterpen berdasarkan visualisasi menggunakan reagen anisaldehid-asam sulfat.


Keywords


Fungi; Antibakteri; KLT Bioautografi; Faktor Retensi



References

Al-Fakih, A. A., & Almaqtri, W. Q. A. (2019). Overview on antibacterial metabolites from terrestrial Aspergillus spp. Mycology, 10(4), 191–209. https://doi.org/10.1080/21501203.2019.1604576

Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet (London, England), 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Bérdy, J. (2005). Bioactive Microbial Metabolites. The Journal of Antibiotics, 58(1), Article 1. https://doi.org/10.1038/ja.2005.1

Bernier, S. P., & Surette, M. G. (2013). Concentration-dependent activity of antibiotics in natural environments. Frontiers in Microbiology, 4, 20. https://doi.org/10.3389/fmicb.2013.00020

Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules, 25(6), 1340. https://doi.org/10.3390/molecules25061340

Chaiyosang, B., Kanokmedhakul, K., Sanmanoch, W., Boonlue, S., Hadsadee, S., Jungsuttiwong, S., & Kanokmedhakul, S. (2019). Bioactive oxaphenalenone dimers from the fungus Talaromyces macrosporus KKU-1NK8. Fitoterapia, 134, 429–434. https://doi.org/10.1016/j.fitote.2019.03.015

Cheng, Z., & Wu, T. (2013). TLC bioautography: High throughput technique for screening of bioactive natural products. Combinatorial Chemistry & High Throughput Screening, 16(7), 531–549. https://doi.org/10.2174/1386207311316070004

Choma, I. M., & Grzelak, E. M. (2011). Bioautography detection in thin-layer chromatography. Journal of Chromatography A, 1218(19), 2684–2691. https://doi.org/10.1016/j.chroma.2010.12.069

Dannert, C. (2015). Biosynthesis of terpenoid natural products in fungi. Advances in Biochemical Engineering/Biotechnology, 148, 19–61. https://doi.org/10.1007/10_2014_283

Demain, A. L., & Sanchez, S. (2009). Microbial drug discovery: 80 years of progress. The Journal of Antibiotics, 62(1), 5–16. https://doi.org/10.1038/ja.2008.16

Devi, R., Kaur, T., Guleria, G., Rana, K. L., Kour, D., Yadav, N., Yadav, A. N., & Saxena, A. K. (2020). Fungal secondary metabolites and their biotechnological applications for human health. Dalam New and Future Developments in Microbial Biotechnology and Bioengineering (hlm. 147–161). Elsevier. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

Gao, S.-S., Li, X.-M., Zhang, Y., Li, C.-S., Cui, C.-M., & Wang, B.-G. (2011). Comazaphilones A−F, Azaphilone Derivatives from the Marine Sediment-Derived Fungus Penicillium commune QSD-17. Journal of Natural Products, 74(2), 256–261. https://doi.org/10.1021/np100788h

Gaynes, R. (2017). The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerging Infectious Diseases, 23(5), 849–853. https://doi.org/10.3201/eid2305.161556

Han, X., Bao, X.-F., Wang, C.-X., Xie, J., Song, X.-J., Dai, P., Chen, G.-D., Hu, D., Yao, X.-S., & Gao, H. (2021). Cladosporine A, a new indole diterpenoid alkaloid with antimicrobial activities from Cladosporium sp. Natural Product Research, 35(7), 1115–1121. https://doi.org/10.1080/14786419.2019.1641807

Hong, X., Tang, L., Chen, Z., Lai, Q., Zhang, B., Jiang, Y., Wang, X., He, R., Lin, J., Shao, Z., Lin, S., & Wang, W. (2024). Benzoquinone and furopyridinone derivatives from the marine-derived fungus Talaromyces sp. MCCC 3A01752. Natural Product Research, 38(2), 320–326. https://doi.org/10.1080/14786419.2022.2121830

Jorgensen, J. H., & Ferraro, M. J. (2009). Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clinical Infectious Diseases, 49(11), 1749–1755. https://doi.org/10.1086/647952

Kustrin, S., Kustrin, E., Gegechkori, V., & Morton, D. W. (2019). High-Performance Thin-Layer Chromatography Hyphenated with Microchemical and Biochemical Derivatizations in Bioactivity Profiling of Marine Species. Marine Drugs, 17(3), 148. https://doi.org/10.3390/md17030148

Li, Y., Wang, Y., Wang, H., Shi, T., & Wang, B. (2024). The Genus Cladosporium: A Prospective Producer of Natural Products. International Journal of Molecular Sciences, 25(3), 1652. https://doi.org/10.3390/ijms25031652

Oh, H., Swenson, D. C., Gloer, J. B., & Shearer, C. A. (2003). New Bioactive Rosigenin Analogues and Aromatic Polyketide Metabolites from the Freshwater Aquatic Fungus Massarina t unicata. Journal of Natural Products, 66(1), 73–79. https://doi.org/10.1021/np020342d

Quin, M. B., Flynn, C. M., & Schmidt-Dannert, C. (2014). Traversing the fungal terpenome. Natural product reports, 31(10), 1449–1473. https://doi.org/10.1039/c4np00075g

Retnowati, A., Rugayah, Rahajoe, J., & Arifiani, D. (2019). Status Keanekaragaman Hayati Indonesia, Kekayaan Jenis Tumbuhan dan Jamur Indonesia. LIPI Press.

Sanchez Armengol, E., Harmanci, M., & Laffleur, F. (2021). Current strategies to determine antifungal and antimicrobial activity of natural compounds. Microbiological Research, 252, 126867. https://doi.org/10.1016/j.micres.2021.126867

Setyaningrum, A. F., Pratiwi, R., Suciati, S., Sugijanto, N. E. N., & Indrayanto, G. (2018). Identification of 4-4’-(1-methylethylidene)-bisphenol from an Endophytic Fungus Cladosporium oxysporum derived from Aglaia odorata. ALCHEMY Jurnal Penelitian Kimia, 14(2), Article 2. https://doi.org/10.20961/alchemy.14.2.12974.193-201

Song, T., Chen, M., Ge, Z.-W., Chai, W., Li, X.-C., Zhang, Z., & Lian, X.-Y. (2018). Bioactive Penicipyrrodiether A, an Adduct of GKK1032 Analogue and Phenol A Derivative, from a Marine-Sourced Fungus Penicillium sp. ZZ380. The Journal of Organic Chemistry, 83(21), 13395–13401. https://doi.org/10.1021/acs.joc.8b02172

Surjowardojo, P., Susilorini, T. E., & Sirait, G. (2015). Daya Hambat Dekok Kulit Apel Manalagi (Malus sylvestrs Mill.) Terhadap Pertumbuhan Staphylococcus aureus dan Pseudomonas sp. Penyebab Mastitis pada Sapi Perah. J. Ternak Tropika, Vol. 16, 40–48.

Tan, S., & Tatsumura, Y. (2015). Alexander Fleming (1881–1955): Discoverer of penicillin. Singapore Medical Journal, 56(07), 366–367. https://doi.org/10.11622/smedj.2015105

Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic Resistance in Bacteria—A Review. Antibiotics, 11(8), 1079. https://doi.org/10.3390/antibiotics11081079

Vaou, N., Stavropoulou, E., Voidarou, C. (Chrysa), Tsakris, Z., Rozos, G., Tsigalou, C., & Bezirtzoglou, E. (2022). Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics, 11(8), 1014. https://doi.org/10.3390/antibiotics11081014

Wahab, M. A., Asolkar, R. N., Inderbitzin, P., & Fenical, W. (2007). Secondary metabolite chemistry of the marine-derived fungus Massarina sp., strain CNT-016. Phytochemistry, 68(8), 1212–1218. https://doi.org/10.1016/j.phytochem.2007.01.020

Wu, B., Ohlendorf, B., Oesker, V., Wiese, J., Malien, S., Schmaljohann, R., & Imhoff, J. F. (2015). Acetylcholinesterase inhibitors from a marine fungus Talaromyces sp. Strain LF458. Marine Biotechnology (New York, N.Y.), 17(1), 110–119. https://doi.org/10.1007/s10126-014-9599-3

Xu, W., Gavia, D. J., & Tang, Y. (2014). Biosynthesis of fungal indole alkaloids. Nat. Prod. Rep., 31(10), 1474–1487. https://doi.org/10.1039/C4NP00073K

Yao, G., Chen, X., Zheng, H., Liao, D., Yu, Z., Wang, Z., & Chen, J. (2021). Genomic and Chemical Investigation of Bioactive Secondary Metabolites From a Marine-Derived Fungus Penicillium steckii P2648. Frontiers in Microbiology, 12, 600991. https://doi.org/10.3389/fmicb.2021.600991



DOI: https://doi.org/10.22146/farmaseutik.v21i2.97584

Article Metrics

Abstract views : 0

Refbacks

  • There are currently no refbacks.


Majalah Farmaseutik Indexed by:

   
 
Creative Commons Licence
 
 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.