Kombinasi Indeks Citra untuk Analisis Lahan Terbangun dan Vegetasi Perkotaan
Iswari Nur Hidayati(1*), R. Suharyadi(2), Projo Danoedoro(3)
(1) Faculty of Geography Universitas Gadjah Mada, Yogyakarta Geographic Science Department, Faculty of Geography, Gadjah Mada University
(2) Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author
Abstract
Lahan terbangun di perkotaan dan area vegetasi menjadi hal yang sangat menarik untuk dikaji. Apalagi dinamika penggunaan lahan di perkotaan yang sangat cepat berubah. Berbagai metode dikembangkan untuk ekstraksi lahan terbangun di perkotaan, mulai dari klasifikasi multispektral, object based approach, hingga penelitian berbasis indeks. NDBI menjadi salah satu indeks pioner untuk ekstraksi lahan terbangun perkotaan dengan menggunakan saluran SWIR. Pengembangan indeks lahan terbangun ini masih perlu dikembangan untuk citra yang tidak mempunyai panjang gelombang SWIR. Tujuan penelitian ini adalah merumuskan kombinasi saluran terbaik dalam ekstraksi lahan terbangun dan area vegetasi serta menghitung kepadatan bangunan dan kerapatan vegetasi berbasis indeks. Penelitian ini menggunakan Citra Worldview-2 yang diperoleh dari Digital Globe Foundation untuk ekstraksi lahan terbangun dan kerapatan vegetasi. Normalized difference index digunakan sebagai formula dalam pembuatan indeks. Pemanfaatan semua saluran spektral dalam citra Worldview-2 digunakan untuk ekstraksi lahan terbangun dan kepadatan bangunan di perkotaan dengan PCA sebagai metode untuk penggabungan delapan saluran dalam Worldview-2. Saluran NIR 1 dan NIR 2 yang digabungkan dengan Saluran Merah menjadi pilihan untuk ekstraksi vegetasi. Proses trial dan error mewarnai pemilihan kombinasi saluran yang digunakan dan treshold yang digunakan untuk analisis biner dalam membedakan lahan terbangun dan non lahan terbangun serta area vegetasi dan area non vegetasi. Pemanfaatan unique identification (UID) digunakan untuk pembuatan grid berbasis raster dalam perhitungan kepadatan bangunan dan kerapatan vegetasi. Hasil penelitian menunjukkan bahwa indeks yang dibangun dengan PC2 dan NIR 1 serta PC2 dan NIR 2 mempunyai akurasi tinggi yaitu 94,43% untuk bangunan dan kombinasi indeks dari NIR1_Red mempunyai akurasi optimal yaitu 99,51% dan NIR2_Red mempunyai akurasi 92,87 untuk ekstraksi data vegetasi.
Urban phenomenon becomes a very interesting thing to be studied. The urban land use, land conversion, urban green space, are rapidly changing. Various methods were developed for urban built-up data extraction, such as multispectral classification, object-based approach, and index-based research. NDBI became one of pioneer indices for urban-built urban land extraction using SWIR band. The development of this built-up index is still required for images that do not have SWIR wavelengths. The study objectives were to select the best methods for built-up land and vegetation extraction and to calculate building density and index-based vegetation density. Worldview-2 image obtained from Digital Globe Foundation tested for built-up land data extracting and vegetation density analyzing. Normalized difference index formula is applied for combining and setting built-up land and vegetation indexes. Merger of Worldview-2 spectral imagery were using PCA method for extracting built-up land and calculating building density. Combining eight bands into eight new images that have different information from original images was done by PCA method. NIR 1, NIR2, and Red bands are the perfect choice for vegetation extraction because near infrared characteristics have high reflections on vegetation. Selection of band combinations and selection of threshold values through trial and error processes to perceive the best index combinations and reasonable threshold values. Binary analysis is particularly useful for separating the built-up and non-built-up areas as well as vegetation and non-vegetation. The Unique identification (UID) technique used in estimating built-up and vegetation density from precisely classified images provided better and accurate assessment of built-up and vegetation density. The results show that the built-up index involving PC2_NIR 1 and PC2_NIR 2 for the urban built land research achieved an optimal accuracy of 94, 43%. The best accuracy for vegetation data extraction was obtained from the combined NIR1_Red index with 99,51% and NIR2_Red values with an overall accuracy of 92,87%.
Keywords
Full Text:
PDFReferences
Abiden, M. Z. Z., Abidin, S. Z. Z., Jamaluddin, M. N. F., & Mara, U. T. (2010). Pixel Based Urban Growth Model for Predicting Future Pattern. In 2010 6th International Colloqium on Signal Processing and its Applications (CSPA) (hal. 135–139).
Bahadur, R., & Murayama, Y. (2012). Landscape and Urban Planning Scenario based urban growth allocation in Kathmandu Valley , Nepal. Landscape and Urban Planning, 105(1–2), 140–148. https://doi.org/10.1016/j.landurbplan.2011.12.007
Blaschke, T. (2010). ISPRS Journal of Photogrammetry and Remote Sensing Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004
Caroline, A. H., & Hidayati, I. N. (2016). Pemanfaatan Citra Quickbird dan SIG untuk Pemetaan Tingkat Kenyamanan Permukiman di Kecamatan Semarang Barat dan Kecamatan Semarang Utara. Majalah Geografi Indonesia, 30(1), 1–8.
Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133–146. https://doi.org/10.1016/j.rse.2005.11.016
Deng, C., & Wu, C. (2012). BCI: A biophysical composition index for remote sensing of urban environments. Remote Sensing of Environment, 127, 247–259. https://doi.org/10.1016/j.rse.2012.09.009
Farizki, M., & Anurogo, W. (2017). Pemetaan Kualitas Permukiman dengan Menggunakan Penginderaan Jauh dan SIG di Kecamatan Batam Kota, Batam. Majalah Geografi Indonesia, 31(1), 39–45.
Forestier, G., Puissant, A., Wemmert, C., & Ganarski, P. (2012). Knowledge-based region labeling for remote sensing image interpretation. Computers, Environment and Urban Systems, 36(5), 470–480. https://doi.org/10.1016/j.compenvurbsys.2012.01.003
Guo, G., Wu, Z., Xiao, R., Chen, Y., Liu, X., & Zhang, X. (2015). Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape and Urban Planning, 135, 1–10. https://doi.org/10.1016/j.landurbplan.2014.11.007
Hidayati, I. N. (2010). Pemanfaatan Teori Bukti Demspter-Shaffer untuk Optimalisasi Penggunaan Lahan Berdasarkan Data Spasial dan Multi Sumber. Embryo, 7(1), 52–66.
Hidayati, I. N. (2013). Ekstraksi Data Indeks Vegetasi untuk Evaluasi Ruang Terbuka Hijau berdasarkan Citra ALOS di Kecamatan Ngaglik Kabupaten Sleman Yogyakarta. Agroteknologi, 3(2), 27–34.
Hidayati, I. N., Suharyadi, & Danoedoro, P. (2017). Pemetaan Lahan Terbangun Perkotaan Menggunakan Pendekatan NDBI dan Segmentasi Semi-Automatik. In Prosiding Seminar Nasional Geografi UMS 2017 (hal. 19–28). Diambil dari https://publikasiilmiah.ums.ac.id/bitstream/handle/11617/8998/semnasgeo2017_2.pdf?sequence=1
Johnson, B. (2014). Effects of Pansharpening on Vegetation Indices. ISPRS International Journal of Geo-Information, 3, 507–522. https://doi.org/10.3390/ijgi3020507
Kumar, A., Pandey, A. C., & Jeyaseelan, A. T. (2012). Built-up and vegetation extraction and density mapping using WorldView-II. Geocarto Internat, 6049(May), 557–568. https://doi.org/10.1080/10106049.2012.657695
Maithani, S. (2009). A Neural Network based Urban Growth Model of an Indian City. Journal Indian Social Remote Sensing, 2021(September), 363–376.
Millward-Hopkins, J. T., Tomlin, A. S., Ma, L., Ingham, D., & Pourkashanian, M. (2011). Estimating Aerodynamic Parameters of Urban-Like Surfaces with Heterogeneous Building Heights. Boundary-Layer Meteorology, 141(3), 443–465. https://doi.org/10.1007/s10546-011-9640-2
Nichol, J., & Wong, M. S. (2009). Mapping urban environmental quality using satellite data and multiple parameters. Environment and Planning B: Planning and Design, 36(1), 170–185. https://doi.org/10.1068/b34034
Purwanto, A. (2015). Pemanfaatan Citra Landsat 8 Untuk Identifikasi Normalized Difference Vegetation Index ( Ndvi ) Di Kecamatan Silat Hilir Kabupaten Kapuas Hulu. Edukasi, 13(1), 27–36.
Richnau, G., Wiström, B., Nielsen, A. B., & Löf, M. (2012). Creation of multi-layered canopy structures in young oak-dominated urban woodlands - The “ecological approach” revisited. Urban Forestry and Urban Greening, 11(2), 147–158. https://doi.org/10.1016/j.ufug.2011.12.005
Schindler, M., & Caruso, G. (2014). Urban compactness and the trade-off between air pollution emission and exposure: Lessons from a spatially explicit theoretical model. Computers, Environment and Urban Systems, 45, 13–23. https://doi.org/10.1016/j.compenvurbsys.2014.01.004
Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized di ff erence built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594.
DOI: https://doi.org/10.22146/mgi.31899
Article Metrics
Abstract views : 7551 | views : 23752Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Majalah Geografi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Volume 35 No 2 the Year 2021 for Volume 39 No 1 the Year 2025
ISSN 0215-1790 (print) ISSN 2540-945X (online)
Statistik MGI