Pemetaan cepat batimetri perairan dangkal menggunakan citra Sentinel-2 dan Google Earth Engine di Perairan Tanjung Kelayang – Pulau Belitung

https://doi.org/10.22146/mgi.80414

Munawaroh Munawaroh(1*), Pramaditya Wicaksono(2), AW Rudiastuti(3)

(1) Magister Penginderaan Jauh, Fakultas Geografi, Universitas Gadjah Mada
(2) Departemen Sains Informasi Geografi, Fakultas Geografi, Universitas Gadjah Mada
(3) Badan Riset dan Inovasi Nasional
(*) Corresponding Author

Abstract


Abstrak Peta batimetri perairan dangkal dapat membantu pengelolaan, pemantauan, dan perlindungan bagi ekosistem di dalamnya. Namun, ketersediaan peta batimetri di wilayah perairan dangkal di Indonesia masih terbatas. Untuk itu, diperlukan sebuah metode pemetaan cepat estimasi batimetri di perairan dangkal di Indonesia. Penelitian ini mencoba mengaplikasikan metode otomatisasi pemetaan batimetri perairan dangkal di Tanjung Kelayang menggunakan band biru dan hijau dari mosaik clean-coastal-water citra Sentinel-2, klorofil-a dari aqua-MODIS pada platform Google Earth Engine (GEE). Tujuan dari penelitian ini adalah menguji keandalan metode pemetaan cepat batimetri dengan menggunakan data mosaik citra satelit Sentinel-2, klorofil-a dan algoritma band-ratio pada platform GEE di wilayah penelitian. Hasil penelitian menunjukkan model SDB (Satellite Derived Bathymetry) memiliki R2 sebesar 0,62, mean absolute erorr (MAE) sebesar 1,77 meter dan RMSE sebesar 2,02 meter dengan estimasi nilai kedalaman optimum 5 meter dan maksimum 10 mter. Dengan demikian, model SDB yang dihasilkan dapat diandalkan sebagai alternatif untuk pemetaan cepat batimetri di perairan dangkal, meskipun harus berkompromi dengan akurasi peta batimetri yang dihasilkan.

 

Abstract Bathymetric maps of shallow waters can aid in managing, monitoring, and protecting ecosystems within them. However, the availability of bathymetric maps for shallow water regions in Indonesia still needs to be improved. Therefore, a method of rapid mapping for bathymetry in shallow waters in Indonesia is needed. This study attempts to apply an automated method for mapping shallow water bathymetry in Tanjung Kelayang using the blue and green bands of the clean-coastal-water mosaic of Sentinel-2 images, chlorophyll-a data from aqua-MODIS, and the Google Earth Engine (GEE) platform. This research aims to test the reliability of the rapid bathymetry mapping method using Sentinel-2 image mosaics, chlorophyll-a data, and band-ratio algorithms on the GEE platform in the study area. The results of the study show that the Satellite Derived Bathymetry (SDB) model has an R2 value of 0,62, a mean absolute error (MAE) of 1,77 meters, and a root mean square error (RMSE) of 2,02 meters, with an estimated optimal depth value of 5 meters and a maximum depth value of 10 meters. Thus, the generated SDB model can be considered a reliable alternative for rapid bathymetry mapping in shallow waters, although it may compromise the accuracy of the resulting bathymetric maps.

 


Keywords


pemetaan cepat, batimetri, klorofil-a, SDB

Full Text:

PDF


References

Ajmar, A., Boccardo, P., Disabato, F., & Giulio Tonolo, F. (2015). Rapid Mapping: geomatics role and research opportunities. Rendiconti Lincei, 26, 63–73. https://doi.org/10.1007/s12210-015-0410-9

Ashphaq, M., Srivastava, P. K., & Mitra, D. (2021). Review of near-shore satellite derived bathymetry: Classification and account of five decades of coastal bathymetry research. Journal of Ocean Engineering and Science, 6(4), 340–359. https://doi.org/10.1016/j.joes.2021.02.006

Balsamo, G., Dutra, E., Stepanenko, V. M., Viterbo, P., Miranda, P. M. A., & Mironov, D. (2010). Deriving an effective lake depth from satellite lake surface temperature data: A feasibility study with MODIS data. Boreal Environment Research, 15(2), 178–190.

Barale, V., Jaquet, J. M., & Ndiaye, M. (2008). Algal blooming patterns and anomalies in the Mediterranean Sea as derived from the SeaWiFS data set (1998-2003). Remote Sensing of Environment, 112(8), 3300–3313. https://doi.org/10.1016/j.rse.2007.10.014

Barnes, B. B., Hu, C., Schaeffer, B. A., Lee, Z., Palandro, D. A., & Lehrter, J. C. (2013). MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: A new approach to remove bottom contamination. Remote Sensing of Environment, 134, 377–391. https://doi.org/10.1016/j.rse.2013.03.016

Bukhari, B., Adi, W., & Kurniawan, K. (2017). Pendugaan Daerah Penangkapan Ikan Tenggiri berdasarkan Distribusi Suhu Permukaan Laut dan Klorofil-a di Perairan Bangka. JURNAL PERIKANAN TANGKAP (Juperta), 01(No. 3), 1–22.

Caballero, I., & Stumpf, R. P. (2019). Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida coastal waters. Estuarine, Coastal and Shelf Science, 226, 106277. https://doi.org/10.1016/j.ecss.2019.106277

Dewi, R. S., Lumban-Gaol, Y., Safi’I, A. N., Rizaldy, A., Syetiawan, A., & Rahadiati, A. (2020). Assessing the effect of various training and testing set ratios to model the satellite derived bathymetry. IOP Conference Series: Earth and Environmental Science, 500(1), 012032. https://doi.org/10.1088/1755-1315/500/1/012032

Dong, Y., Liu, Y., Hu, C., & Xu, B. (2019). Coral reef geomorphology of the Spratly Islands: A simple method based on time-series of Landsat-8 multi-band inundation maps. ISPRS Journal of Photogrammetry and Remote Sensing, 157, 137–154. https://doi.org/10.1016/j.isprsjprs.2019.09.011

Eugenio, F., Marcello, J., & Martin, J. (2015). High-Resolution Maps of Bathymetry and Benthic Habitats in Shallow-Water Environments Using Multispectral Remote Sensing Imagery. IEEE Transactions on Geoscience and Remote Sensing, 53(7), 3539–3549. https://doi.org/10.1109/TGRS.2014.2377300

Giardino, C., Bresciani, M., Cazzaniga, I., Schenk, K., Rieger, P., Braga, F., Matta, E., & Brando, V. E. (2014). Evaluation of multi-resolution satellite sensors for assessing water quality and bottom depth of Lake Garda. Sensors (Switzerland), 14(12), 24116–24131. https://doi.org/10.3390/s141224116

Hedley, J. D., Roelfsema, C., Brando, V., Giardino, C., Kutser, T., Phinn, S., Mumby, P. J., Barrilero, O., Laporte, J., & Koetz, B. (2018). Coral reef applications of Sentinel-2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sensing of Environment, 216, 598–614. https://doi.org/10.1016/j.rse.2018.07.014

Hlaing, S., Harmel, T., Gilerson, A., Foster, R., Weidemann, A., Arnone, R., Wang, M., & Ahmed, S. (2013). Evaluation of the VIIRS ocean color monitoring performance in coastal regions. Remote Sensing of Environment, 139, 398–414. https://doi.org/10.1016/j.rse.2013.08.013

Hu, C., Lee, Z., & Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research: Oceans, 117(C1). https://doi.org/10.1029/2011JC007395

Hussein, K. A., Al Abdouli, K., Ghebreyesus, D. T., Petchprayoon, P., Al Hosani, N., & Sharif, H. O. (2021). Spatiotemporal variability of chlorophyll-a and sea surface temperature, and their relationship with bathymetry over the coasts of uae. Remote Sensing, 13(13). https://doi.org/10.3390/rs13132447

Kanno, A., & Tanaka, Y. (2012). Modified lyzenga’s method for estimating generalized coefficients of satellite-based predictor of shallow water depth. IEEE Geoscience and Remote Sensing Letters, 9(4), 715–719. https://doi.org/10.1109/LGRS.2011.2179517

Kerr, J. M., & Purkis, S. (2018). An algorithm for optically-deriving water depth from multispectral imagery in coral reef landscapes in the absence of ground-truth data. Remote Sensing of Environment, 210, 307–324. https://doi.org/10.1016/j.rse.2018.03.024

Kutser, T., Hedley, J., Giardino, C., Roelfsema, C., & Brando, V. E. (2020). Remote sensing of shallow waters – A 50 year retrospective and future directions. Remote Sensing of Environment, 240, 111619. https://doi.org/10.1016/j.rse.2019.111619

Kutser, T., Paavel, B., Kaljurand, K., Ligi, M., & Randla, M. (2019). Mapping Shallow Waters of the Baltic Sea with Sentinel-2 Imagery. 2018 IEEE/OES Baltic International Symposium, BALTIC 2018, September 2017, 1–6. https://doi.org/10.1109/BALTIC.2018.8634850

Lee, Z. P., Darecki, M., Carder, K. L., Davis, C. O., Stramski, D., & Rhea, W. J. (2005). Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods. Journal of Geophysical Research C: Oceans, 110(2), 1–9. https://doi.org/10.1029/2004JC002573

Lee, Z., Weidemann, A., & Arnone, R. (2013). Combined effect of reduced band number and increased bandwidth on shallow water remote sensing: The case of world view 2. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2577–2586. https://doi.org/10.1109/TGRS.2012.2218818

Li, J., Knapp, D. E., Lyons, M., Roelfsema, C., Phinn, S., Schill, S. R., & Asner, G. P. (2021). Automated Global Shallow Water Bathymetry Mapping Using Google Earth Engine. Remote Sensing, 13(8), 1469. https://doi.org/10.3390/rs13081469

Li, J., Knapp, D. E., Schill, S. R., Roelfsema, C., Phinn, S., Silman, M., Mascaro, J., & Asner, G. P. (2019). Adaptive bathymetry estimation for shallow coastal waters using Planet Dove satellites. Remote Sensing of Environment, 232(January), 111302. https://doi.org/10.1016/j.rse.2019.111302

Liu, Y., Zhao, J., Deng, R., Liang, Y., Gao, Y., Chen, Q., Xiong, L., Liu, Y., Tang, Y., & Tang, D. (2021). A downscaled bathymetric mapping approach combining multitemporal Landsat-8 and high spatial resolution imagery: Demonstrations from clear to turbid waters. ISPRS Journal of Photogrammetry and Remote Sensing, 180, 65–81. https://doi.org/10.1016/j.isprsjprs.2021.07.015

Lyzenga, D. R., Malinas, N. P., & Tanis, F. J. (2006). Multispectral bathymetry using a simple physically based algorithm. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2251–2259. https://doi.org/10.1109/TGRS.2006.872909

Moerwanto, A. S., & Junoasmoro, T. (2017). Strategi pembangunan infrastruktur wisata terintegrasi. Jurnal HPJI, 3(2), 67–78.

Morel, A., & Maritorena, S. (2001). Bio-optical properties of oceanic waters: A reappraisal. Journal of Geophysical Research: Oceans, 106(C4), 7163–7180. https://doi.org/10.1029/2000jc000319

O’reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., & Carder, K. L. (1998). Ocean Color Chlorophyll Algorithms for SEAWIFS Ocean Color Chlorophyll Algorithms for SEAWIFS Scholar Commons Citation Scholar Commons Citation. https://digitalcommons.usf.edu/msc_facpub/6

Poliyapram, V., Raghavan, V., Metz, M., Delucchi, L., & Masumoto, S. (2017). Implementation of algorithm for satellite-derived bathymetry using open source GIS and evaluation for tsunami simulation. ISPRS International Journal of Geo-Information, 6(3). https://doi.org/10.3390/ijgi6030089

Poursanidis, D., Traganos, D., Reinartz, P., & Chrysoulakis, N. (2019). On the use of Sentinel-2 for coastal habitat mapping and satellite-derived bathymetry estimation using downscaled coastal aerosol band. International Journal of Applied Earth Observation and Geoinformation, 80, 58–70. https://doi.org/10.1016/j.jag.2019.03.012

Purkis, S. J. (2018). Remote sensing tropical coral reefs: The view from above. Annual Review of Marine Science, 10(August 2017), 149–168. https://doi.org/10.1146/annurev-marine-121916-063249

Purkis, S. J., & Pasterkamp, R. (2004). Integrating in situ reef-top reflectance spectra with Landsat TM imagery to aid shallow-tropical benthic habitat mapping. Coral Reefs, 23(1), 5–20. https://doi.org/10.1007/s00338-003-0351-0

Simonetti, D., Pimple, U., Langner, A., & Marelli, A. (2021). Pan-tropical Sentinel-2 cloud-free annual composite datasets. Data in Brief, 39, 107488. https://doi.org/10.1016/j.dib.2021.107488

Song, X., Gu, Y., Zhai, F., Li, P., Liu, P., Liu, Z., Wu, W., Chen, Y., Jiang, X., & He, J. (2021). Climatology and seasonal variability of satellite-derived chlorophyll a around the Shandong Peninsula. Journal of Oceanology and Limnology, 39(4), 1222–1244. https://doi.org/10.1007/s00343-020-0249-5

Stumpf, R. P., Holderied, K., & Sinclair, M. (2003). Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnology and Oceanography, 48(1 II), 547–556. https://doi.org/10.4319/lo.2003.48.1_part_2.0547

Traganos, D., Poursanidis, D., Aggarwal, B., Chrysoulakis, N., & Reinartz, P. (2018). Estimating satellite-derived bathymetry (SDB) with the Google Earth Engine and sentinel-2. Remote Sensing, 10(6), 1–18. https://doi.org/10.3390/rs10060859

Traganos, D., & Reinartz, P. (2018). Machine learning-based retrieval of benthic reflectance and Posidonia oceanica seagrass extent using a semi-analytical inversion of Sentinel-2 satellite data. International Journal of Remote Sensing, 39(24), 9428–9452. https://doi.org/10.1080/01431161.2018.1519289

Ulfa, K., Muchsin, F., Surya Chandra, D., Adi Pradono, K., Fibriawati, L., Indriani Oktavia, M., & Winda Veronica Damanik Pusat Teknologi dan Data Penginderaan Jauh, K. (2019). Analisa Pola Spektral Citra Sentinel-2 (Spectral Analysis of Sentinel-2 Images). Nasional Jl. Lapan No, 20(2), 38–43.

Vanhellemont, Q., & Ruddick, K. (2014). Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sensing of Environment, 145, 105–115. https://doi.org/10.1016/j.rse.2014.01.009

Vindrola-Padros, C., & Johnson, G. A. (2020). Rapid Techniques in Qualitative Research: A Critical Review of the Literature. In Qualitative Health Research (Vol. 30, Issue 10, pp. 1596–1604). SAGE Publications Inc. https://doi.org/10.1177/1049732320921835

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82. https://doi.org/10.3354/cr030079

Willmott, C. J., & Matsuura, K. (2006). On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. International Journal of Geographical Information Science, 20(1), 89–102. https://doi.org/10.1080/13658810500286976

Zoffoli, M., Frouin, R., & Kampel, M. (2014). Water Column Correction for Coral Reef Studies by Remote Sensing. Sensors, 14(9), 16881–16931. https://doi.org/10.3390/s140916881



DOI: https://doi.org/10.22146/mgi.80414

Article Metrics

Abstract views : 4225 | views : 3961

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Munawaroh Munawaroh, Pramaditya Wicaksono, AW Rudiastuti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 164/E/KPT/2021

Volume 35 No 2 the Year 2021 for Volume 39 No 1 the Year 2025

ISSN  0215-1790 (print) ISSN 2540-945X  (online)

 

website statistics Statistik MGI