Comparison Effect of Leaves and Bark Extract of Eucalyptus (Melaleuca leucadendra), Sappan (Caesalpinia sappan), and Cinnamon (Cinnamomum zeylanicum) to Reduce Streptococcus mutans Biofilm Formation

https://doi.org/10.22146/majkedgiind.83283

Trianna Wahyu Utami(1*), Bernadetha Nathania Ekananda(2), Yasmin Regita Anjani(3), Dyah Listyarifah(4), Asikin Nur(5), Atus Syahbudin(6)

(1) Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(2) Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(3) Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(4) Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(5) Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(6) Department of Silviculture, Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author

Abstract


To evaluate the effect of eucalyptus, sappan, and cinnamon leaf and bark extract on the percentage of S. mutans biofilm formation. The test group was divided into a negative control (1% Dimethyl sulfoxide), a treatment group (eucalyptus, sappan, and cinnamon leaves and bark at concentrations of 50%, 25%, and 12.5%, respectively), and a positive control (0.2% chlorhexidine). Each concentration of eucalyptus, sappan, and cinnamon leaves and barks extract, Brain Heart Infusion Broth (BHI-B), bacteria according to the McFarland 0.5 standard, a positive control, and a negative control were added to a 96-well microplate. They were incubated at 37 °C for twenty-four hours before being rinsed with phosphate buffer saline (PBS) and stained with 0.1% crystal violet. The optical density was then measured using a microplate reader with a 540 nm wavelength. The absorbance value is then factored into the percentage of bacterial adhesion inhibition formula. A statistical test revealed a significant difference (p < 0.05) in the percentage of inhibition between the three extracts of leaves and bark and the negative control group (1% DMSO). There is a significant difference between all leaves and barks concentration and the positive control group except the 50% concentration of sappan leaf group and 50% concentration of cinnamon leaf group. The sappan leaf and cinnamon leaf at 50% concentration exhibit no significant difference (p > 0.05) with the positive control. Eucalyptus, sappan, cinnamon leaves and barks at a concentration of 50% demonstrated effectiveness of the extractant in inhibiting the formation of biofilm masses by S. mutans in comparison with the other group.


Keywords


biofilm; caries; cinnamon; eucalyptus, sappan; S. mutans

Full Text:

PDF


References

1. Ministry of Health of the Republic of Indonesia. Report on National Basic Health Research
2007. Jakarta: Ministry of Health of the Republic of Indonesia; 2007.

2. Ministry of Health of the Republic of Indonesia. Report on National Basic Health Research
2013. Jakarta: Ministry of Health of the Republic of Indonesia; 2013.

3. Bramantoro T, Irmalia WR, Santoso CMA, Mohd Nor NA, Utomo H, Ramadhani A, Kristanti
RA, Nugraha AP. The effect of caries on the chewing ability of children: a scoping review. Eur J Dent. 2022. doi: 10.1055/s-0042-1758066

4. Chen X, Daliri EB, Kim N, Kim JR, Yoo D, Oh DH. Microbial etiology and prevention of dental
caries: exploiting natural products to inhibit cariogenic biofilms. Pathogens. 2020; 9(7):
569. doi: 10.3390/pathogens9070569

5. Shih TM, Hsiao JF, Shieh DB, Tsai GE. Acidic microenvironment-sensitive core-shell
microcubes: the self-assembled and the therapeutic effects for caries prevention. Eur J
Dent. 2022. doi: 10.1055/s-0042-1757464

6. Institute of Medicine (US) Committee on Resource Sharing in Biomedical Research.
Resource Sharing in Biomedical Research. Berns KI, Bond EC, Manning FJ, editors.
Washington (DC): National Academies Press (US); 1996.

7. Dewi ZY, Nur A, Hertriani T. Efek antibakteri dan penghambatan biofilm ekstrak sereh
(Cymbopogon nardus L.) terhadap bakteri Streptococcus mutans. Majalah Kedokteran
Gigi Indonesia. 2015; 20(2): 136-141. doi: 10.22146/majkedgiind.9120

8. Guven Y, Ustun N, Tuna EB, Aktoren O. Antimicrobial Effect of Newly Formulated
Toothpastes and a Mouthrinse on Specific Microorganisms: An In Vitro Study. Eur J Dent.
2019; 13(2): 172-177. doi: 10.1055/s-0039-1695655

9. Magaz VR, Llovera BF, Martí M, Garre A. Clinical impact and cosmetic acceptability
of chlorhexidineenriched toothpaste and mouthwash application on periodontal disease:
A randomized clinical study. J Contemp Dent Pract. 2018; 19(11): 1295-1300.
doi: 10.5005/jp-journals-10024-2421

10. Sadlon AE, Lamson DW. Immune-modifying and antimicrobial effects of Eucalyptus oil and
simple inhalation devices. Altern Med Rev. 2010; 15(1): 33-47.

11. He Z, Huang Z, Jiang W, Zhou W. Antimicrobial Activity of Cinnamaldehyde on Streptococcus
mutans Biofilms. Front Microbiol. 2019; 10:1-11. doi: 10.3389/fmicb.2019.02241

12. Quave CL, Plano LRW, Pantuso T, Bennett BC. Effects of extracts from Italian medicinal
plants on planktonic growth, biofilm formation and adherence of methicillin-resistant
Staphylococcus aureus. J Ethnopharmacol. 2008; 118(3): 418-428.
doi: 10.1016/j.jep.2008.05.005

13. Mieher JL, Larson MR, Schormann N, et al. Glucan binding protein C of Streptococcus
mutans mediates both sucrose-independent and sucrose-dependent adherence. Infect
Immun. 2018; 86(7): e00146-18. doi: 10.1128/IAI.00146-18

14. Elgamily H, Mosallam O, El-Sayed H, Mosallam R. Antibacterial effectiveness of probiotic-based experimental mouthwash against cariogenic pathogen: an in vitro study. Eur J Dent. 2018; 12(1): 7-14. doi: 10.4103/ejd.ejd_253_17

15. Nakano K, Nakagawa I, Alaluusua S, Ooshima T. Molecular typing in bacterial infections. Mol
Typing Bact Infect. 2013: 1-482.

16. Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A. The virulence of
Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis. 2014;
33(4): 499-515. doi: 10.1007/s10096-013-1993-7

17. Ziani BEC, Heleno SA, Bachari K, Dias MI, Alves MJ, Barros L, Ferreira ICFR. Phenolic
compounds characterization by LC-DADESI/MSn and bioactive properties of Thymus algeriensis Boiss. & Reut. and Ephedra alata Decne. Food Res Int. 2019; 116: 312-319.
doi: 10.1016/j.foodres.2018.08.041

18. Seo J, Lee S, Elam ML, Johnson SA, Kang J, Arjmandi BH. Study to find the best extraction
solvent for use with guava leaves (Psidium guajava L .) for high antioxidant efficacy. Food
Sci Nutr. 2014; 2(2): 174-180. doi: 10.1002/fsn3.91

19. Kumar SB. Chlorhexidine mouthwash- a review. J Pharm Sci Res. 2017; 9(9): 1450-1452.

20. Wadhwani T, Desai K, Patel D, Lawani D, Bahaley P, Joshi P, Kothari V. Effect of various
solvents on bacterial growth in context of determining MIC of various antimicrobials. Internet J Microbiol. 2012; 7(1): 1-6.

21. Mi H, Wang D, Xue Y, Zhang Z, Niu J, Hong Y, Drlica K, Zhao X. Dimethyl Sulfoxide Protects
Escherichia coli from Rapid Antimicrobial-Mediated Killing. Antimicrob Agents Chemother.
2016; 60(8): 5054-5058. doi: 10.1128/AAC.03003-15

22. Saputra SK, Farmasyanti CA, Sutantyo D, Alhasyimi AA. The effect of the addition of
propolis to resin-modified glass ionomer cement bracket adhesive materials on the
growth inhibition zone of Streptococcus mutans. F1000Research. 2020; 8: 1-18.
doi: 10.12688/f1000research.20717.2

23. Biharee A, Sharma A, Kumar A, Jaitak V. Antimicrobial flavonoids as a potential substitute
for overcoming antimicrobial resistance. Fitoterapia. 2020; 146: 104720.
doi: 10.1016/j.fitote.2020.104720

24. Du J, Gebicki JM. Proteins are major initial cell targets of hydroxyl free radicals. Int J Biochem Cell Biol. 2004; 36(11): 2334-2343. doi: 10.1016/j.biocel.2004.05.012

25. Liantari DS. Pengaruh ekstrak tunggal dan gabungan daun belimbing wuluh (Averrhoa
bilimbi Linn) terhadap efektivitas antibakteri secara in vitro. J Major. 2014; 3(7): 27-33.

26. Arsyada IF, Rianti D, Munadziroh E. Antibacterial activity of mixed pineapple peel (Ananas comosus) extract and calcium hydroxide paste against Enterococcus faecalis. Dent J (Majalah Kedokt Gigi). 2018; 51(1): 20-24. doi: 10.20473/j.djmkg.v51.i1.p20-24

27. Vasconcelos LCDS, Sampaio FC, Sampaio MCC, Pereira MDSV, Higino JS, Peixoto MHP.
Minimum inhibitory concentration of adherence of Punica granatum Linn (pomegranate) gel
against S. mutans, S. mitis and C. albicans. Braz Dent J. 2006; 17(3): 223-227.
doi: 10.1590/s0103-64402006000300009

28. Jeffrey J, Satari MH, Kurnia D. Antibacterial effect of lime (Citrus aurantifolia) peel extract in
preventing biofilm formation. J Med Heal. 2019; 2(4): 1020-1029. doi: 10.28932/jmh.v2i4.1841

29. Moo CL, Osman MA, Yang SK, Yap WS, Ismail S, Lim SHE, Chong CM, Lai KS. Antimicrobial
activity and mode of action of 1,8-cineol against carbapenemase-producing Klebsiella
pneumoniae. Sci Rep. 2021; 11(1): 20824. doi: 10.1038/s41598-021-00249-y

30. Carvalho C, Fernandes WHC, Mouttinho TBF, Souza DM, Marcucci MC, D'Alpino PHP.
Evidence-based studies and perspectives of the use of brazilian green and red propolis in
dentistry. Eur J Dent. 2019; 13(3): 459-465. doi: 10.1055/s-0039-1700598

31. Rutkowska E, Paja̧k K, Jóźwiak K. Lipophilicity- methods of determination and its role in
medicinal chemistry. Acta Pol Pharm - Drug Res. 2013; 70(1): 3-18.

32. Özek G, Bedir E, Tabanca N, Ali A, Khan IA, Duran A, Başer KHC, Özek T. Isolation of
eudesmane type sesquiterpene ketone from Prangos heyniae H.Duman & M.F.Watson
essential oil and mosquitocidal activity of the essential oils. Open Chemistry. 2018; 16(1):
453-467. doi: 10.1515/chem-2018-0051

33. Thosar N, Basak S, Bahadure RN, Rajurkar M. Antimicrobial efficacy of five essential oils
against oral pathogens: An in vitro study. Eur J Dent. 2013; 7(Suppl 1): S071-S077.
doi: 10.4103/1305-7456.119078

34. Thi N, An G, Huong LT, Satyal P, Tai TA, Dai DN. Mosquito larvicidal activity, antimicrobial
activity, and chemical compositions of essential oils from four species of myrtaceae from Central
Vietnam. Plants. 2020; 9(4): 544. doi: 10.3390/plants9040544

35. Adil M, Singh K, Verma PK, Khan AU. Eugenolinduced suppression of biofilm-forming genes
in Streptococcus mutans: An approach to inhibit biofilms. J Glob Antimicrob Resist. 2014;
2(4): 286-292. doi: 10.1016/j.jgar.2014.05.006

36. Puttipan R, Wanachantararak P, Khongkhunthian S, Okonogi S. Effects of Caesalpinia sappan on pathogenic bacteria causing dental caries and gingivitis. Drug Discov Ther. 2017; 11(6): 316-322. doi: 10.5582/ddt.2017.01055

37. Puttipan R, Chansakaow S, Khongkhunthian S, Okonogi S. Caesalpinia sappan: A promising
natural source of antimicrobial agent for inhibition of cariogenic bacteria. Drug Discov Ther. 2018; 12(4): 197-205. doi: 10.5582/ddt.2018.01035

38. Palmer AG, Senechal AC, Mukherjee A, Ané JM, Blackwell HE. Plant responses to bacterial
N-acyl l-homoserine lactones are dependent on enzymatic degradation to l-homoserine.
ACS Chem Biol. 2014; 9(8): 1834-1845. doi: 10.1021/cb500191a

39. Yue J, Yang H, Liu S, Song F, Guo J, Huang C. Influence of naringenin on the biofilm formation of Streptococcus mutans. J Dent. 2018; 76: 24-31. doi: 10.1016/j.jdent.2018.04.013

40. Kaur G, Rajesh S, Princy SA. Plausible drug targets in the streptococcus mutans quorum
sensing pathways to combat dental biofilms and associated risks. Indian J Microbiol. 2015;
55(4): 349-356. doi: 10.1007/s12088-015-0534-8



DOI: https://doi.org/10.22146/majkedgiind.83283

Article Metrics

Abstract views : 1179 | views : 838

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

 View My Stats


real
time web analytics