Formulating of moringa oil microemulsion used Surfactant Poly Ethylene Glycol 40 Hydrogenated Castrol Oil and Co-Surfactant of Glycerin

  • Nining Sugihartini Faculty of Pharmacy Universitas Ahmad Dahlan
  • Uswatun Chasanah
  • Sapto Yuliani
Keywords: glycerine, microemulsion, moringa oil, PEG 40 Hydrogenated castor oil

Abstract

Moringa seed oil contains oleic acid that benefits the skin. It has anti-inflammatory and skin moisturizing properties. Increasing effectiveness: Moringa oil is made into a microemulsion. The microemulsion system consists of Moringa oil, S-mix (Polyethylene Glycol 40 Hydrogenated Castor Oil as a surfactant and glycerine as a co-surfactant), and water. The microemulsions are formulated by a titration method and create a pseudo ternary phase diagram with S-mix (Surfactant: Co-surfactant) at 3:2, 1:1, and 2:3. The most optimized moringa oil microemulsion formulation was subjected to characterized such as organoleptic properties, %Transmittance, pH, viscosity, stability, particle globule size, zeta potential, and polydispersity index (PdI). The construction of a pseudo-ternary phase diagram and the titration methods constituted a suitable technique for preparing microemulsions, as most formulations were transparent. It was found that S-Mix (1:1) has a broad area with the oil phase in the range of 4.0% - 8.3%, S-Mix in the range of 48.0%-66.7%, and water in the field of 25.0-48%. The pH is in the range of 5.91-7.64. Meanwhile, the viscosity is in the range of 60-992cPs. The decline in oil and S-mix concentration reduces the pH value and viscosity. They are stable after the thermodynamic test, freeze-thaw cycling test, and after being kept at room temperature for one month. According to these findings, the microemulsion of moringa oil using PEG 40 Hydrogenated Castor Oil and Glycerine formulation might serve as a suitable drug delivery system.

References

Ali, S. M., & Yosipovithch, G. (2013). Skin pH_ From Basic Science to Basic Skin Care. Acta Derm Venereol, 93, 261–267.
Ande, N. S., Sonone, B. K., Bakal, L. R., Ajmire, V. P., & Sawarkar, S. H. (2022). Role of surfactant and co-surfactant in microemulsion: A review. Research Journal of Pharmacy and Technology, 15(10), 4829–4834.
Burnett, C. L., Heldreth, B., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., Marks, J. G., Shank, R. C., Slaga, T. J., Snyder, P. W., & Andersen, F. A. (2014). Safety Assessment of PEGylated Oils as Used in Cosmetics. International Journal of Toxicology, 33, 13S-39S. https://doi.org/10.1177/1091581814546337
Coskun, O. (2016). Separation Tecniques: Chromatography. Northern Clinics of Istanbul, 3(2), 156–160. https://doi.org/10.14744/nci.2016.32757
Cretella, A. B. M., Soley, B. da S., Pawloski, P. L., Ruziska, R. M., Scharf, D. R., Ascari, J., Cabrini, D. A., & Otuki, M. F. (2020). Expanding the anti-inflammatory potential of Moringa oleifera: topical effect of seed oil on skin inflammation and hyperproliferation. Journal of Ethnopharmacology, 254, 112708. https://doi.org/10.1016/j.jep.2020.112708
Date, A. A., & Nagarsenker, M. S. (2008). Parenteral microemulsions: An overview. International Journal of Pharmaceutics, 355(1–2), 19–30. https://doi.org/10.1016/j.ijpharm.2008.01.004
Fitriani, E. W., Imelda, E., Kornelis, C., & Avanti, C. (2016). Karakterisasi dan Stabilitas Fisik Mikroemulsi Tipe A / M dengan Berbagai Fase Minyak Abstrak. Pharmaceutical Sciences and Research, 3(1), 31–44.
Gharsallah, K., Rezig, L., Msaada, K., Chalh, A., & Soltani, T. (2021). Chemical compositionand profile characterization of moringa oleifera seed oil. South African Journal of Botany, 137, 475–482. https://doi.org/10.1016/j.sajb.2020.11.014
Gradzielski, M., Duvail, M., De Molina, P. M., Simon, M., Talmon, Y., & Zemb, T. (2021). Using Microemulsions: Formulation Based on Knowledge of Their Mesostructure. Chemical Reviews, 121(10), 5671–5740. https://doi.org/10.1021/acs.chemrev.0c00812
Jang, H.-J., Shin, C. Y., & Kim, K.-B. (2015). Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use. Toxicological Research, 31(2), 105–136. https://doi.org/10.5487/TR.2015.31.2.105
Kale, S., & Deore, S. (2017). Emulsion Microemulsion and Nanoemulsion. Systematic Review in Pharmacy, 8(1), 39–47.
Kleiman, R., Ashley, D. A., & Brown, J. H. (2008). Comparison of two seed oils used in cosmetics, moringa and marula. Industrial Crops and Products, 28(3), 361–364. https://doi.org/10.1016/j.indcrop.2008.04.003
Leone, A., Spada, A., Battezzati, A., Schiraldi, A., Aristil, J., & Bertoli, S. (2016). Moringa oleifera seeds and oil: Characteristics and uses for human health. International Journal of Molecular Sciences, 17(12), 1–14. https://doi.org/10.3390/ijms17122141
Mirshra, A., Panola, R., & A.C, R. (2014). Microemulsions: As drug delivery system. Journal of Scientific and Innovative Research, 3(4), 467–474. https://doi.org/10.31254/jsir.2014.3412
Ngawhirunpat, T., Worachun, N., Opanasopit, P., Rojanarata, T., & Panomsuk, S. (2013). Cremophor RH40-PEG 400 microemulsions as transdermal drug delivery carrier for ketoprofen. Pharmaceutical Development and Technology, 18(4), 798–803. https://doi.org/10.3109/10837450.2011.627871
Nita, T., Julia, R., & Jansen, S. (2019). Formulation and Evaluation Of Moringa Seed Oil Nanoemulsion Gel. Asian Journal of Pharmaceutical Research and Development Open, 7(6), 1–5.
Pareek, A., Pant, M., Gupta, M. M., Kashania, P., Ratan, Y., Jain, V., Pareek, A., & Chuturgoon, A. A. (2023). Moringa oleifera: An Updated Comprehensive Review of Its Pharmacological Activities, Ethnomedicinal, Phytopharmaceutical Formulation, Clinical, Phytochemical, and Toxicological Aspects. International Journal of Molecular Sciences, 24(3). https://doi.org/10.3390/ijms24032098
Pathan, A., Zikriya, A., & Quazi, A. (2012). Microemulsion: As Excellent Drug Delivery System. International Journal for Pharmaceutical Research Scholars, 1(3), 199–210.
Pouton, C. W., & Porter, C. J. H. (2008). Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Advanced Drug Delivery Reviews, 60(6), 625–637. https://doi.org/10.1016/j.addr.2007.10.010
Purnamawati, S., Indrastuti, N., Danarti, R., & Saefudin, T. (2017). The role of moisturizers in addressing various kinds of dermatitis: A review. Clinical Medicine and Research, 15(3–4), 75–87. https://doi.org/10.3121/cmr.2017.1363
Roloff, A., Weisgerber, H., Lang, U., & Stimm, B. (2009). Moringa oleifera Lam., 1785. In Enzyklopädie der Holzgewächse, Handbuch und Atlas der Dendrologie. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim. https://doi.org/10.56807/buj.v3i1.130
Sharma, A. K., Garg, T., Goyal, A. K., & Rath, G. (2016). Role of microemuslsions in advanced drug delivery. Artificial Cells, Nanomedicine and Biotechnology, 44(4), 1177–1185. https://doi.org/10.3109/21691401.2015.1012261
Silva, A. E., Barratt, G., Cheŕon, M., & Egito, E. S. T. (2013). Development of oil-in-water microemulsions for the oral delivery of amphotericin B. International Journal of Pharmaceutics, 454(2), 641–648. https://doi.org/10.1016/j.ijpharm.2013.05.044
SNI. (1996). SNI 16-4399-1996: Sediaan Tabir Surya. In Dewan Standardisasi Nasional (Vol. 16, Issue 4399, pp. 1–3). Dewan Standardisasi Nasional.
Souto, E. B., Cano, A., Martins-Gomes, C., Coutinho, T. E., Zielińska, A., & Silva, A. M. (2022). Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering, 9(4), 1–22. https://doi.org/10.3390/bioengineering9040158
Tartaro, G., Mateos, H., Schirone, D., Angelico, R., & Palazzo, G. (2020). Microemulsion Microstructure ( s ): A Tutorial Review. 1–40.
Tenjarla, S. (1999). Microemulsions: an overview and pharmaceutical applications. Critical Reviews in Therapeutic Drug Carrier Systems, 16(5), 461–521.
Urmaliya, H., Gupta, M. K., Agrawal, A., Jain, N. K., & Dubey, A. (2016). Formulation development and evaluation of microemulsion gel of Ketoconazole as an antifungal agent. Pharmacia: An Int J of Pharm Sci, 2, 120–130.
Ventura, A. C. S. S. B., de Paula, T., Gonçalves, J. P., Soley, B. da S., Cretella, A. B. M., Otuki, M. F., & Cabrini, D. A. (2021). The oil from Moringa oleifera seeds accelerates chronic skin wound healing. Phytomedicine Plus, 1(3), 1–11. https://doi.org/10.1016/j.phyplu.2021.100099
Vibhute, S., Kasture, V., Kasture, S., Kendre, P., Rupnar, S., & Pande, V. (2015). Design and characterization of Moringa oleifera seed oil impregnated antiinflammatory topical micro-dispersion. Der Pharmacia Lettre, 7(3), 7–16.
Wang, W., Cai, Y., Liu, Y., Zhao, Y., Feng, J., & Liu, C. (2017). Microemulsions based on paeonol-menthol eutectic mixture for enhanced transdermal delivery: formulation development and in vitro evaluation. Artificial Cells, Nanomedicine and Biotechnology, 45(6), 1241–1246. https://doi.org/10.1080/21691401.2016.1226178
Yu, Y. Q., Yang, X., Wu, X. F., & Fan, Y. Bin. (2021). Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Frontiers in Bioengineering and Biotechnology, 9(March), 1–17. https://doi.org/10.3389/fbioe.2021.646554
Published
2025-03-27
How to Cite
Sugihartini, N., Chasanah, U., & Yuliani, S. (2025). Formulating of moringa oil microemulsion used Surfactant Poly Ethylene Glycol 40 Hydrogenated Castrol Oil and Co-Surfactant of Glycerin. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.11195
Section
Research Article

Most read articles by the same author(s)