Effect of Ethanol Percentage on Phytochemical Constituent, Antioxidant Activity, and Dermatological Potential of Cayratia trifolia (L.) Domin

Pharmacological activity of Cayratia trifolia

  • Riventio Junior Universitas Almarisah Madani
  • Desy A Lestari Universitas Almarisah Madani
  • Nursamsiar Nursamsiar Universitas Almarisah Madani
  • Marwati Marwati Universitas Almarisah Madani
  • Megawati Megawati Universitas Almarisah Madani
  • Alfat Fadri Universitas Almarisah Madani
  • Lukman Muslimin Almarisah Madani University
Keywords: Antioxidant, Cayratia trifolia (L.) Domin, Elastase, Phytochemical, Tyrosinase

Abstract

The present investigation evaluated four different solvent compositions (water, 50% ethanol, 70% ethanol, and pure ethanol) for their relative capacity to extract, total phenolic (TP), total flavonoid (TF) components, antioxidant activities, and dermatological potential of leaves of Cayratia trifolia (L.) Domin. The TP and TF of extracts were measured using the Folin–Ciocalteau and AlCl3, respectively. Antioxidant activity was evaluated using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP). Meanwhile, in vitro dermatological potential, tyrosinase, and elastase inhibitory are by the colorimetric method. The extract obtained by pure ethanol presented the most potent antioxidant activity. DPPH and FRAP IC50 values were 16.60±0.62 µg/mL and 27.53±0.69 µg/mL, respectively. The same extract also exhibited the highest TP (3.82±0.15 mg GAE/g DW) and TF (3.23±0.09 mg QE/g DW). Our finding additionally suggested that pure ethanol provides the highest extraction yield. However, 70% ethanol extract was a good source of tyrosinase (IC50, 60.49±7.73 µg/mL) and elastase inhibitor (IC50, 45.49±0.37 µg/mL). Overall, the experimental results revealed that C. trifolia has significant antioxidant and inhibitory action on skin-related tyrosinase and elastase, indicating that they might be used as bioactive metabolites in cosmetic and medicinal formulations to combat skin drooping and hyperpigmentation.

References

Addor FASa. (2017). Antioxidants in dermatology. An Bras Dermatol, 92(3); 356-62.
https://doi.org/10.1590/abd1806-4841.20175697
Amina B-B, Roukia H, Mahfoud HA, Ahlem T, Sabrina B, Chahrazed B, Houria M. (2020). Optimization of extraction conditions of the polyphenols, flavonoids and the antioxidant activity of the plant Ammosperma cinereum (Brassicaceae) through the Response Surface Methodology (RSM). Asian J Research Chem, 13(1); 1-6.
https://doi.org/10.5958/0974-4150.2020.00001.2
Arianti V, Elya B. (2020). Anti-elastase, antioxidant, total phenolic and total flavonoid content of wuru ketek (Myrica javanica Reinw. Ex BL.) from Tangkuban Perahu, West Java - Indonesia. Pharmacogn J, 12(2); 293-97.
https://doi.org/10.5530/pj.2020.12.46
Bahadur S, Roy A, Chanda R, Baghel P, Saha S, Choudhury A. (2016). Extraction and evaluation of some phytochemcial and physicochemical properties of Hibiscus rosasinensis mucilage. Res J Pharmacognosy & Phytochem, 8(4); 205-08.
https://doi.org/10.5958/0975-4385.2016.00030.3
Cespedes CL, Balbontin C, Avila JG, Dominguez M, Alarcon J, Paz C, Burgos V, Ortiz L, Peñaloza-Castro I, Seigler DS, Kubo I. (2017). Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves. Food Chem Toxicol, 109; 984-95.
https://doi.org/10.1016/j.fct.2017.05.009
Checa J, Aran JM. (2020). Reactive oxygen species: Drivers of physiological and pathological processes. J Inflamm Res, 13; 1057-73.
https://doi.org/10.2147/jir.S275595
Chen J, Liu Y, Zhao Z, Qiu J. (2021). Oxidative stress in the skin: Impact and related protection. Int J Cosmet Sci, 43(5); 495-509.
https://doi.org/10.1111/ics.12728
Collin F. (2019). Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int J Mol Sci, 20(10); e2407.
https://doi.org/10.3390/ijms20102407
Dumbuya H, Hafez SY, Oancea E. (2020). Cross talk between calcium and ROS regulate the UVA-induced melanin response in human melanocytes. FASEB J, 34(9); 11605-23.
https://doi.org/10.1096/fj.201903024R
Fajrin M, Ibrahim N, Nugrahani AW. (2015). Ethnomedicinal study on Dondo tribe of Dondo Subdistrict, Tolitoli Regency, Central Sulawesi. Galenica J Phar, 1(2); 92-98.
https://doi.org/10.22487/j24428744.2015.v1.i2.6239
Guediri I, Boubekri C, Smara O, Lanez T. (2021). Total phenolic contents and determination of Antioxidant activity by DPPH, FRAP, and cyclic voltammetry of the fruit of Solanum nigrum (black nightshade) growing in the south of Algeria. Asian J Research Chem, 14(1); 47-55.
https://doi.org/10.5958/0974-4150.2021.00008.0
Guemari F, Laouini SE, Rebiai A, Bouafia A. (2020). Phytochemical screening and identification of polyphenols, evaluation of antioxidant activity and study of biological properties of extract Silybum marianum (L.). Asian J Research Chem, 13(3); 190-97.
https://doi.org/10.5958/0974-4150.2020.00037.1
Ighodaro OM, Akinloye OA. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med, 54(4); 287-93.
https://doi.org/10.1016/j.ajme.2017.09.001
Indrisari M, Sartini S, Miskad UA, Djawad K, Tahir KA, Nurkhairi N, Muslimin L. (2021). Photoprotective and inhibitory activity of tyrosinase in extract and fractions of Terminalia catappa L. Open Access Maced J Med Sci, 9(A); 263-70.
https://doi.org/10.3889/oamjms.2021.5940
Janghel A, Deo S, Raut P, Bhosle D, Verma C, Kumar SS, Agrawal M, Amit N, Sharma M, Giri T, Tripathi DK, Ajazuddin, Alexander A. (2015). Supercritical fluid extraction (SFE) techniques as an innovative green technologies for the effective extraction of the active phytopharmaceuticals. Research J Pharm & Tech, 8(6); 775-86.
https://doi.org/10.5958/0974-360X.2015.00125.0
Jiratchayamaethasakul C, Ding Y, Hwang O, Im S-T, Jang Y, Myung S-W, Lee JM, Kim H-S, Ko S-C, Lee S-H. (2020). In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fish Aquatic Sci, 23; e6.
https://doi.org/10.1186/s41240-020-00149-8
Kaur N, Gupta J. (2017). Comparison of phytochemical extraction solvents for Andrographis paniculata. Research J Pharm Tech, 10(5); 1271-76.
https://doi.org/10.5958/0974-360X.2017.00226.8
Kumar D, Kumar S, Gupta J, Arya R, Gupta A. (2011). A review on chemical and biological properties of Cayratia trifolia Linn. (Vitaceae). Pharmacogn Rev, 5(10); 184-88.
https://doi.org/10.4103/0973-7847.91117
Mangiwa A, Maulidah M, Patulen TR, Kende DK, Ismail I, Lestari DA, Indrisari M, Muslimin L. (2023). A comparative study on antioxidant activity of infusion and decoction of (Cayratia trifolia (L.) Domin). J Pharm Scie, 6(3); 909-15.
https://doi.org/10.36490/journal-jps.com.v6i3.55
Meganathan B, Palanisamy CP, Panagal M. (2021). Antioxidant, antimicrobial and cytotoxicity potential of n-hexane extract of Cayratia trifolia L. Bioinformation, 17(3); 452-59.
https://doi.org/10.6026/97320630017452
Muslimin L, Zainal TH, Hardianti B, Megawati M, Marwati M. (2023). Effect of solvent extraction on antityrosinase and sun protection factor of mulberry (Morus alba L.) Cultivated in Wajo, Indonesia. Trop J Nat Prod Res, 7(6); 3114-18.
https://doi.org/10.26538/tjnpr/v7i6.7
Pakki E, Tayeb R, Usmar U, Ridwan IA, Muslimin L. (2020). Effect of orally administered combination of Caulerpa racemosa and Eleutherine americana (Aubl) Merr extracts on phagocytic activity of macrophage. Res Pharm Sci, 15(4); 401-09.
https://doi.org/10.4103/1735-5362.293518
Pawar AR, Vikhe DN, Jadhav RS. (2020). Recent advances in extraction techniques of herbals – A review. Asian J Res Pharm Sci, 10(4); 287-92.
https://doi.org/10.5958/2231-5659.2020.00050.8
Potbhare M, Khobragade D. (2017). In vitro evaluation of antioxidant potential of ayurvedic preparations lauha bhasma and mandura bhasma. Asian J Pharm Res, 7(2); 63-66.
https://doi.org/10.5958/2231-5691.2017.00011.9
Quan T, Fisher GJ. (2015). Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: A mini-review. Gerontology, 61(5); 427-34.
https://doi.org/10.1159/000371708
Rangasamy P, Hansiya VS, Maheswari PU, Suman T, Geetha N. (2019). Phytochemical analysis and evaluation of in vitro antioxidant and anti-urolithiatic potential of various fractions of Clitoria ternatea L. Blue flowered leaves. Asian J Pharm Ana, 9(2); 67-76.
https://doi.org/10.5958/2231-5675.2019.00014.0
Samydurai P, Saradha M. (2016). Effects of various solvent on the extraction of antimicrobial, antioxidant phenolics from the stem bark of Decalepis hamiltonii Wight and Arn. Asian J Res Pharm Sci, 6(2); 129-34.
https://doi.org/10.5958/2231-5659.2016.00018.7
Skoczyńska A, Budzisz E, Trznadel-Grodzka E, Rotsztejn H. (2017). Melanin and lipofuscin as hallmarks of skin aging. Postepy Dermatol Alergol, 34(2); 97-103.
https://doi.org/10.5114/ada.2017.67070
Solano F. (2020). Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. Molecules (Basel, Switzerland), 25(7); e1537.
https://doi.org/10.3390/molecules25071537
Sun C, Wu Z, Wang Z, Zhang H. (2015). Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of beijing propolis extracts. Evid Based Complementary Altern Med; e595393.
https://doi.org/10.1155/2015/595393
Sun L, Guo Y, Zhang Y, Zhuang Y. (2017). Antioxidant and anti-tyrosinase activities of phenolic extracts from rape bee pollen and inhibitory melanogenesis by cAMP/MITF/TYR pathway in B16 mouse melanoma cells. Front Pharmacol, 8; e104.
https://doi.org/10.3389/fphar.2017.00104
Truong D-H, Nguyen DH, Ta NTA, Bui AV, Do TH, Nguyen HC. (2019). Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J Food Qual; e8178294.
https://doi.org/10.1155/2019/8178294
Xu D-P, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang J-J, Li H-B. (2017). Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int J Mol Sci, 18(1); e96.
https://doi.org/10.3390/ijms18010096
Yu Q, Duan J, Yu N, Fan L. (2020). Enhancing the antityrosinase activity of saponins and polyphenols from Asparagus by hot air coupled with microwave treatments. LWT, 124; e109174.
https://doi.org/10.1016/j.lwt.2020.109174
Yunus M, Suprihati E, Wijaya A. (2021). Assessment of relationship between antioxidant activity, toxicity and phenol content of Cayratia trifolia ethanolic extract. Sys Rev Pharm, 12(1); 1261-66.
https://doi.org/10.31838/srp.2021.1.176
Zhang Q-W, Lin L-G, Ye W-C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chin Med, 13; e20.
https://doi.org/10.1186/s13020-018-0177-x
Published
2024-12-19
How to Cite
Junior, R., A Lestari, D., Nursamsiar , N., Marwati , M., Megawati , M., Fadri, A., & Muslimin, L. (2024). Effect of Ethanol Percentage on Phytochemical Constituent, Antioxidant Activity, and Dermatological Potential of Cayratia trifolia (L.) Domin. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.11765
Section
Research Article