The application arbutin in elimination resistance of antibiotics against Gramm-negative multi-drug resistance bacteria of Acinetobacter baumanni and Klebsiella pneumonic

Keywords: arbutin, multi-drug resistant, Gram-negative strains, molecular docking, removal resistance, antibiotics

Abstract

The purpose of our work was investigate in vitro and in silico elimination resistance of antibiotics against clinical multidrug-resistant strains of A. baumani, K. pneumonia by arbutin. The molecular docking was performed using AutoDockTools 1.5.6; antimicrobial effects were evaluated by the well method. Theoretical studies have found that none of the investigated antibiotics and arbutin highly selectively inhibits all "targets" mechanisms of antimicrobial action. In experimental studies, it was observed that the addition of arbutin to the antibiotic led to the emergence of sensitivity on the part of resistant strains. All Gramm-negative resistance strains of bacteria were sensitive to the action of arbutin. Moreover, arbutin increased the antimicrobial effect of antibiotics from 8 to 55%. It was estimated exceptions such as clarithromycin and azithromycin when assessing antimicrobial activity against A. baumani and P. aeruginosa. These studies haves shown that to inhibit resistant strains of bacteria, require the use of combinations of “classical” antimicrobials and herbal drugs or dietary supplements based on extracts obtained from arbutin-containing medicinal plants such as lingonberry, bearberry, and cranberry. This approach is a “lifeline” for the development of antimicrobial agents against resistant bacteria and gives “a second chance to return to life” for outdated antibiotics.

Author Biographies

Mykola Komisarenko , National University of Pharmacy

Department of Pharmacognosy and Nutriciology

Svitlana Ponomarenko, Mechnikov Institute of Microbiology and Immunology of the NAMS of Ukraine

Laboratory of Biochemistry and Biotechnology

Tetiana Osolodchenko , Mechnikov Institute of Microbiology and Immunology of the NAMS of Ukraine

Laboratory of Biochemistry and Biotechnology

Artem Marchenko, National University of Pharmacy

Department of Pharmacognosy and Nutriciology

Sergii Kolisnyk , National University of Pharmacy

Department of General Chemistry

Oleh Koshovyi, University of Tartu

Faculty of Medicine

References

Abinaya, M., & Gayathri, M. (2019a). Inhibition of biofilm formation, quorum sensing activity and molecular docking study of isolated 3, 5, 7-Trihydroxyflavone from Alstonia scholaris leaf against P.aeruginosa. Bioorganic Chemistry, 87, 291–301. https://doi.org/10.1016/j.bioorg.2019.03.050
Abinaya, M., & Gayathri, M. (2019b). Inhibition of biofilm formation, quorum sensing activity and molecular docking study of isolated 3, 5, 7-Trihydroxyflavone from Alstonia scholaris leaf against P.aeruginosa. Bioorganic Chemistry, 87, 291–301. https://doi.org/10.1016/j.bioorg.2019.03.050
Aranaga, C., Pantoja, L. D., Martínez, E. A., & Falco, A. (2022). Phage Therapy in the Era of Multidrug Resistance in Bacteria: A Systematic Review. International Journal of Molecular Sciences, 23(9), 4577. https://doi.org/10.3390/ijms23094577
CASTp 3.0: Computed Atlas of Surface Topography of proteins. (n.d.). http://sts.bioe.uic.edu/castp/index.html?201l
Jean, S.-S., Harnod, D., & Hsueh, P.-R. (2022). Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.823684
Jogula, S., Krishna, V. S., Meda, N., Balraju, V., & Sriram, D. (2020). Design, synthesis and biological evaluation of novel Pseudomonas aeruginosa DNA gyrase B inhibitors. Bioorganic Chemistry, 100, 103905. https://doi.org/10.1016/j.bioorg.2020.103905
Kondratiuk, V., Jones, B. T., Kovalchuk, V., Kovalenko, I., Ganiuk, V., Kondratiuk, O., & Frantsishko, A. (2021). Phenotypic and genotypic characterization of antibiotic resistance in military hospital-associated bacteria from war injuries in the Eastern Ukraine conflict between 2014 and 2020. Journal of Hospital Infection, 112, 69–76. https://doi.org/10.1016/j.jhin.2021.03.020
Kondža, M., Brizić, I., & Jokić, S. (2024). Flavonoids as CYP3A4 Inhibitors In Vitro. Biomedicines, 12(3), 644. https://doi.org/10.3390/biomedicines12030644
Ma, C., He, N., Zhao, Y., Xia, D., Wei, J., & Kang, W. (2019). Antimicrobial Mechanism of Hydroquinone. Applied Biochemistry and Biotechnology, 189(4), 1291–1303. https://doi.org/10.1007/s12010-019-03067-1
MASLOV, O., KOMISARENKO, M., KOLISNYK, S., TKACHENKO, O., AKHMEDOV, E., POLUAIN, S., KOSTINA, T., & KOLISNYK, O. (2023). Study of qualitative composition and quantitative content of free organic acids in lingberry leaves. Fitoterapia, (1), 77–82. https://doi.org/10.32782/2522-9680-2023-1-77
Maslov, O., Komisarenko, M., Ponomarenko, S., Horopashna, D., Osolodchenko, T., Kolisnyk, S., Derymedvid, L., Shovkova, Z., & Akhmedov, E. (2022). Investigation the influence of biologically active compounds on the antioxidant, antibacterial and anti-inflammatory activities of red raspberry (Rubus idaeous l.) leaf extract. Current Issues in Pharmacy and Medical Sciences, 35(4), 229–235. https://doi.org/10.2478/cipms-2022-0040
Mbarga, M. J. A., Podoprigora, I. V., Volina, E. G., Ermolaev, A. V., & Smolyakova, L. A. (2021). Evaluation of Changes Induced in the Probiotic Escherichia coli M17 Following Recurrent Exposure to Antimicrobials. Journal of Pharmaceutical Research International, 158–167. https://doi.org/10.9734/jpri/2021/v33i29b31601
Mende, K., Akers, K. S., Tyner, S. D., Bennett, J. W., Simons, M. P., Blyth, D. M., Li, P., Stewart, L., & Tribble, D. R. (2022). Multidrug-Resistant and Virulent Organisms Trauma Infections: Trauma Infectious Disease Outcomes Study Initiative. Military Medicine, 187(Supplement_2), 42–51. https://doi.org/10.1093/milmed/usab131
Morris, G. M., Huey, R., & Olson, A. J. (2008). Using AutoDock for Ligand‐Receptor Docking. Current Protocols in Bioinformatics, 24(1). https://doi.org/10.1002/0471250953.bi0814s24
Petrosillo, N., Petersen, E., & Antoniak, S. (2023). Ukraine war and antimicrobial resistance. The Lancet Infectious Diseases. https://doi.org/10.1016/s1473-3099(23)00264-5
PubChem. (n.d.). PubChem. https://pubchem.ncbi.nlm.nih.gov/
Pulingam, T., Parumasivam, T., Gazzali, A. M., Sulaiman, A. M., Chee, J. Y., Lakshmanan, M., Chin, C. F., & Sudesh, K. (2022). Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. European Journal of Pharmaceutical Sciences, 170, 106103. https://doi.org/10.1016/j.ejps.2021.106103
RCSB PDB: Homepage. (n.d.). RCSB PDB: Homepage. https://www.rcsb.org/
Schultze, T., Hogardt, M., Velázquez, E. S., Hack, D., Besier, S., Wichelhaus, T. A., Rochwalsky, U., Kempf, V. A., & Reinheimer, C. (2023a). Molecular surveillance of multidrug-resistant Gram-negative bacteria in Ukrainian patients, Germany, March to June 2022. Eurosurveillance, 28(1). https://doi.org/10.2807/1560-7917.es.2023.28.1.2200850
Schultze, T., Hogardt, M., Velázquez, E. S., Hack, D., Besier, S., Wichelhaus, T. A., Rochwalsky, U., Kempf, V. A., & Reinheimer, C. (2023b). Molecular surveillance of multidrug-resistant Gram-negative bacteria in Ukrainian patients, Germany, March to June 2022. Eurosurveillance, 28(1). https://doi.org/10.2807/1560-7917.es.2023.28.1.2200850
Volyanskiy, Y., Gritsenko, I., & Shyrokobokov, V. (2004). The study of the specific activity of antimicrobial drugs: a method recommendation. StEntScPhC Ministry of Helthcare of Ukraine: Kiev.
Zhou, H., Zhao, J., Li, A., & Reetz, M. T. (2019). Chemical and Biocatalytic Routes to Arbutin †. Molecules, 24(18), 3303. https://doi.org/10.3390/molecules24183303
Zuo, K., Liang, L., Du, W., Sun, X., Liu, W., Gou, X., Wan, H., & Hu, J. (2017). 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation of Pseudomonas aeruginosa LpxC Inhibitors. International Journal of Molecular Sciences, 18(5), 761. https://doi.org/10.3390/ijms18050761
Published
2025-03-27
How to Cite
Maslov, O., Komisarenko , M., Ponomarenko, S., Osolodchenko , T., Marchenko, A., Kolisnyk , S., Koshovyi, O., & Komissarenko , A. (2025). The application arbutin in elimination resistance of antibiotics against Gramm-negative multi-drug resistance bacteria of Acinetobacter baumanni and Klebsiella pneumonic. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.13966
Section
Research Article