Microencapsulation of Ethyl Acetate Extract from Green Coffee Beans (Coffea Canephora) by Spray Drying Method

  • Muhammad Ali Husni Universitas Syiah Kuala
  • Akhmad Kharis Nugroho Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • Nanang Fakhrudin Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada
  • Teuku Nanda Saifullah Sulaiman Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia, 55281
Keywords: spray drying, Robusta, chlorogenic acid, caffeine, whey protein concentrate


Coffee contains caffeine and chlorogenic acid (CGA) as the main constituent benefiting human health. Extract of green coffee beans (GCB) has some limitations in terms of its unpleasant flavour, aroma, and phytoconstituents bioactivity. This study aimed to encapsulate the crude ethyl acetate (EtOAc) extracts of Gayo Robusta GCB (Coffea canephora) to overcome its limitation. Microencapsulation was carried out by spray drying method using whey protein concentrate (WPC) as a coating material to produce nutraceutical supplement microparticles. The microparticles size, morphology, and physicochemical characteristics were investigated. We found that the yield of microparticles was 39.5%, volume diameter was1.367 µm, and span was 1.162 µm. The morphology of the microparticles was irregular microspheres particle with dense, smoothness, wrinkle, shrivel, compactness, and homogeneous structure shape particles. The physicochemical properties measurentment indicated that it has scavenging radical activity value (RSA) 374.53 µg/mL, total phenol content (TPC) 6.92 g GAE/kg, caffeine content 9.12%, and CGA levels 7.19%. The spray drying microencapsulation by using WPC was able to engulf and package the unpleasant flavour and aroma of the crude extract of Gayo Robusta GCB, produce abundant yield of smaller and narrower particle, and protect and carry considerable amounts of phytoconstituents bioactivity.



Abrahão, F. R., Rocha, L. C. R., Santos, T. A., Carmo, E. L. do, Pereira, L. A. S., Borges, S. V., Pereira, R. G. F. A., & Botrel, D. A. (2019). Microencapsulation of bioactive compounds from espresso spent coffee by spray drying. LWT, 103, 116–124. https://doi.org/10.1016/j.lwt.2018.12.061

Aguiar, J., Estevinho, B. N., & Santos, L. (2016). Microencapsulation of natural antioxidants for food application-The specific case of coffee antioxidants-A review. Trends in Food Science & Technology, 58, 21–39. https:// doi.org/10.1016/j.tifs.2016.10.012

Al Shannaq, R., & Farid, M. M. (2015). Microencapsulation of phase change materials (PCMs) for thermal energy storage systems. In L. F. Cabeza (Ed.), Advances in Thermal Energy Storage Systems (pp. 247–284). Woodhead Publishing. http://www.sciencedirect.com/science/article/pii/ B9781782420880500109

Arpagaus, C., John, P., Collenberg, A., & Rütti, D. (2017). Nanocapsules formation by nano spray drying. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries (pp. 346–401). Elsevier. https://doi.org/ 10.1016/B978-0-12-809436-5.00010-0

Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623–631. https://doi.org/10.1016/ j.foodchem.2017.05.142

Bastías-Montes, J. M., Choque-Chávez, M. C., Alarcón-Enos, J., Quevedo-León, R., Muñoz-Fariña, O., & Vidal-San-Martín, C. (2019). Effect of spray drying at 150, 160, and 170 °C on the physical and chemical properties of maqui extract (Aristotelia chilensis (Molina) Stuntz). Chilean Journal of Agricultural Research, 79(1), 144–152. https://doi.org/10.4067/S0718-58392019000100144

Belviso, S., & Barbosa-Pereira, L. (2019). Coffee Supplements. In Nonvitamin and Nonmineral Nutritional Supplements (pp. 177–185). Elsevier. https:// doi.org/10.1016/B978-0-12-812491-8.00025-4

Chong, S., & Wong, C. W. (2017). Effect of spray dryer inlet temperature and maltodextrin concentration on colour profile and total phenolic content of Sapodilla (Manilkara zapota) powder. International Food Research Journal, 24, 2543–2548.

Cid, M. C., & de Peña, M.-P. (2016). Coffee: Analysis and Composition. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 225–231). Academic Press. http://www.sciencedirect.com/ science/article/pii/B9780123849472001859

de Melo Pereira, G. V., de Carvalho Neto, D. P., Magalhães Júnior, A. I., do Prado, F. G., Pagnoncelli, M. G. B., Karp, S. G., & Soccol, C. R. (2020). Chemical composition and health properties of coffee and coffee by-products. In Advances in Food and Nutrition Research (Vol. 91, pp. 65–96). Elsevier. https://doi.org/10.1016/bs.afnr.2019.10.002

Desai, N. M., Gilbert Stanley, J., & Murthy, P. S. (2020). Green coffee nanoparticles: Optimisation, in vitro bioactivity and bio-release property. Journal of Microencapsulation, 37(1), 52–64. https://doi.org/10.1080/ 02652048.2019.1692946

Desai, N. M., Haware, D. J., Basavaraj, K., & Murthy, P. S. (2019). Microencapsulation of antioxidant phenolic compounds from green coffee. Preparative Biochemistry and Biotechnology, 49(4), 400–406. https://doi.org/10.1080/ 10826068.2019.1575858

Fang, Z., & Bhandari, B. (2012). Encapsulation Techniques for Food Ingredient Systems. In B. Bhandari & Y. H. Roos (Eds.), Food Materials Science and Engineering (pp. 320–348). Wiley-Blackwell. http://onlinelibrary.wiley. com/doi/10.1002/9781118 373903.ch12/summary

Fikry, M., Yusof, Y. A., M. Al-Awaadh, A., Abdul Rahman, R., Chin, N. L., & Ghazali, H. M. (2019). Antioxidative and Quality Properties of Full-Fat Date Seeds Brew as Influenced by the Roasting Conditions. Antioxidants, 8(7). https://doi.org/ 10.3390/antiox8070226

Frascareli, E. C., Silva, V. M., Tonon, R. V., & Hubinger, M. D. (2012). Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, 90(3), 413–424. https://doi.org/ 10.1016/j.fbp.2011.12.002

Garg, S. K. (2016). Green Coffee Bean. In Nutraceuticals (pp. 653–667). Elsevier. https://doi.org/10.1016/B978-0-12-802147-7.00047-4

Gaspar, S., & Ramos, F. (2016). Caffeine: Consumption and Health Effects. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 573–578). Academic Press. http://www.sciencedirect.com/science/article/pii/B9780123849472000994

Gilbert Stanley, J. (2020). Green coffee nanoparticles: Optimisation, in vitro bioactivity and bio-release property. Journal of Microencapsulation, 37(1), 52–64. https://doi.org/10.1080/02652048.2019.1692946

Gonçalves, B., Moeenfard, M., Rocha, F., Alves, A., Estevinho, B. N., & Santos, L. (2017). Microencapsulation of a Natural Antioxidant from Coffee-Chlorogenic Acid (3-Caffeoylquinic Acid). Food and Bioprocess Tech-nology, 10(8), 1521-1530. https://doi.org/10.1007/s11947-017-1919-y

Jacobs, I. C. (2014). Atomization and Spray-Drying Processes. In Microencapsulation in the Food Industry (pp. 47–56). Elsevier. https://doi.org/10.1016/ B978-0-12-404568-2.00005-4

Khaire, R. A., & Gogate, P. R. (2019). Whey Proteins. In Proteins: Sustainable Source, Processing and Applications (pp. 193–223). Elsevier. https:// doi.org/10.1016/ B978-0-12-816695-6.00007-6

Khoddami, A., Wilkes, M. A., & Roberts, T. H. (2013). Techniques for Analysis of Plant Phenolic Compounds. Molecules, 18(2), 2328–2375. https://doi.org/ 10.3390/ molecules18022328

Kuck, L. S., & Noreña, C. P. Z. (2016). Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chemistry, 194, 569–576. https://doi.org/10.1016/j.foodchem.2015.08. 066

Kupina, S., Fields, C., Roman, M. C., & Brunelle, S. L. (2018). Determination of Total Phenolic Content Using the Folin-C Assay: Single-Laboratory Validation, First Action 2017.13. Journal of AOAC INTERNATIONAL, 101(5), 1466–1472. https://doi.org/10.5740/jaoacint.18-0031

Kusmayadi, A., Adriani, L., Abun, A., Muchtaridi, M., & Tanuwiria, U. H. (2019). The microencapsulation of mangosteen peel extract with maltodextrin from arenga starch: Formulation and characterization. Journal of Applied Pharmaceutical Science, 9(3), 33–40. https://doi.org/10.7324/JAPS.2019. 90306

Nosari, A. B. F. L., Lima, J. F., Serra, O. A., & Freitas, L. A. P. (2015). Improved green coffee oil antioxidant activity for cosmetical purpose by spray drying microencapsulation. Revista Brasileira de Farmacognosia, 25(3), 307–311. https://doi.org/10.1016/j.bjp.2015.04.006

Papoutsis, K., Golding, J. B., Vuong, Q., Pristijono, P., Stathopoulos, C. E., Scarlett, C. J., & Bowyer, M. (2018). Encapsulation of Citrus By-Product Extracts by Spray-Drying and Freeze-Drying Using Combinations of Maltodextrin with Soybean Protein and ι-Carrageenan. Foods, 7(7). https://doi.org/10.3390/foods7070115

Pietsch, A. (2017). Chapter 10—Decaffeination-Process and Quality. In B. Folmer (Ed.), The Craft and Science of Coffee (pp. 225–243). Academic Press. https://doi.org/10.1016/B978-0-12-803520-7.00010-4

Sakawulan, D., Archer, R., & Borompichaichartkul, C. (2018, September 11). Enhancing antioxidant property of instant coffee by microencapsulation via spray drying. Proceedings of 21th International Drying Symposium. 21st International Drying Symposium. https://doi.org/10.4995/IDS2018.2018. 7520

Silva Faria, W. C., da Conceição, E. C., Moura, W. de M., Barros, W. M. de, Converti, A., & Bragagnolo, N. (2020). Design and evaluation of microencapsulated systems containing extract of whole green coffee fruit rich in phenolic acids. Food Hydrocolloids, 100, 105437. https://doi.org/ 10.1016/j.foodhyd.2019.105437

Tine, Y., Renucci, F., Costa, J., Wélé, A., & Paolini, J. (2017). A Method for LC-MS/MS Profiling of Coumarins in Zanthoxylum zanthoxyloides (Lam.) B. Zepernich and Timler Extracts and Essential Oils. Molecules, 22(1), 174. https://doi.org/10.3390/ molecules22010174

Vasisht, N. (2014). Chapter 2—Factors and Mechanisms in Microencapsulation. In A. G. Gaonkar, N. Vasisht, A. R. Khare, & R. Sobel (Eds.), Microencapsulation in the Food Industry (pp. 15–24). Academic Press. http://www.sciencedirect.com/ science/article/pii/B9780124045682000029

Villanueva, D., Luna, P., Manic, M., Najdanovic–Visak, V., & Fornari, T. (2011). Extraction of caffeine from green coffee beans using ethyl lactate. 9th Green Chemistry Conference, 2. http://www.iuct.net/oldweb/pdf/David% 20Villanueva. pdf

Vinson, J. A., Chen, X., & Garver, D. D. (2019). Determination of Total Chlorogenic Acids in Commercial Green Coffee Extracts. Journal of Medicinal Food, 22(3), 314–320. https://doi.org/10.1089/jmf.2018.0039

Yashin, A., Yashin, Y., Wang, J. Y., & Nemzer, B. (2013). Antioxidant and Antiradical Activity of Coffee. Antioxidants, 2(4), 230–245. https://doi.org/ 10.3390/antiox 2040230
How to Cite
Husni, M. A., Nugroho, A. K., Fakhrudin, N., & Sulaiman, T. N. S. (2021). Microencapsulation of Ethyl Acetate Extract from Green Coffee Beans (Coffea Canephora) by Spray Drying Method. Indonesian Journal of Pharmacy, 32(2), 221-231. https://doi.org/10.22146/ijp.1457
Research Article