Antimicrobial Prospects of Domesticated Ornamental Leaf Extracts Against Skin Pathogens

  • Nurshahira Ezzany Shamshul Hakimi Department of Pharmacy, Hospital Putrajaya, Pusat Pentadbiran Kerajaan Persekutuan, Presint 7, 62250 Putrajaya https://orcid.org/0009-0005-1291-076X
  • Aliff Zulkarnain Zaini Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor, 42300 Bandar Puncak Alam, Selangor, MALAYSIA https://orcid.org/0009-0008-7585-666X
  • Mohd Faiz Mustaffa Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor, 42300 Bandar Puncak Alam, Selangor, Malaysia; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China https://orcid.org/0000-0001-7785-4774
Keywords: Ornamental plants, acne vulgaris, dermatophytosis, antimicrobial activity, cytotoxicity

Abstract

The increasing popularity of natural plant-based treatments offers an alternative to conventional therapies for various cutaneous infections due to their potential efficacy and lower side effects. Thus, the present study aimed to investigate the antimicrobial and cytotoxic properties of leaf extracts from five selected domesticated ornamental plants against pathogens implicated in acne vulgaris and dermatophytosis. The selected plant leaves were successively macerated with solvents of increasing polarity and the extracts were underwent qualitative phytochemical analysis.  The antimicrobial activities were evaluated using the broth microdilution method. Extracts with high antimicrobial activity (MIC≤128µg/mL) were subsequently tested for cytotoxicity on BJ fibroblast cells, and the selectivity index (SI) was calculated. Extraction yields were highest in Bougainvilea glabra (72.04%) and lowest in Plumeria obtusa (21.6%). Phytochemical screening revealed the presence of alkaloids, flavonoids, terpenoids, tannins, phenols, quinolones, saponins, and coumarins, with phenols found in all extracts. The aqueous extract of Alamanda cathartica (AC-Aq) and the methanol extract of Ixora coccinea (IC-Met) showed the most potent antibacterial activities against P. acnes and S. epidermidis, with MIC values of 128μg/mL and 64μg/mL, respectively. Antifungal activity was most pronounced in AC-Aq against T. mentagrophytes and T. rubrum, with MIC values of 32μg/mL. The six active extracts revealed varying degrees of toxicity, with the aqueous extract of P. obtusa (PO-Aq) exhibited the least cytotoxicity (CC50: 713.31±3.71 μg/mL), while IC-Aq was the most cytotoxic (CC50: 116.72±2.28 μg/mL). AC-Aq demonstrated the highest SI values, indicating effective antimicrobial activity at non-toxic concentrations.

References

Agbebi, E. A., Alabi, O. S., Nkrumah, A. O., & Ogbole, O. O. (2022). Evaluation of the antibacterial and antifungal potentials of peptide-rich extracts from selected Nigerian plants. European Journal of Integrative Medicine, 54, 102163. https://doi.org/10.1016/j.eujim.2022.102163
Aliabasi, S., Shams-Ghahfarokhi, M., & Razzaghi-Abyaneh, M. (2023). Eugenol Effectively Inhibits Trichophyton rubrum Growth via Affecting Ergosterol Synthesis, Keratinase Activity, and SUB3 Gene Expression. Journal of Herbal Medicine, 42, 100768. https://doi.org/10.1016/j.hermed.2023.100768
Antuori, A., Fernández, G., Fernández, A., Alcaide, M., Boada, A., Bielsa, M. I., Romaní, N., & Matas, L. (2019). Epidemiology of dermatophytic infections between 2008 and 2017 in Barcelona, Spain. Enfermedades Infecciosas y Microbiologia Clinica (English Ed.), 37(10), 642–647. https://doi.org/10.1016/j.eimce.2019.02.009
Bhuyan, B., & Sonowal, R. (2021). An overview of Pandanus amaryllifolius Roxb.exLindl. and its potential impact on health. In Current Trends in Pharmaceutical Research (Vol. 8, Issue 1, pp. 1–20). https://dibru.ac.in/wp-content/uploads/2021/09/08-CTPR-Review-BB-06.pdf?2023120908
Bihani, T., Tandel, P., & Wadekar, J. (2021). Plumeria obtusa L.: A systematic review of its traditional uses, morphology, phytochemistry and pharmacology. Phytomedicine Plus, 1(2), 100052. https://doi.org/10.1016/j.phyplu.2021.100052
Bonetti, A., Tugnoli, B., Rossi, B., Giovagnoni, G., Piva, A., & Grilli, E. (2020). Nature-identical compounds and organic acids reduce E. Coli K88 growth and virulence gene expression in vitro. Toxins, 12(8). https://doi.org/10.3390/toxins12080468
Clemen-Pascual, L. M., Macahig, R. A. S., & Rojas, N. R. L. (2022). Comparative toxicity, phytochemistry, and use of 53 Philippine medicinal plants. Toxicology Reports, 9, 22–35. https://doi.org/10.1016/j.toxrep.2021.12.002
Clinical Laboratory Standard Institute (CLSI). (2008). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi ; Approved Standard — Second Edition (Vol. 28, Issue 16). Wayne, PA: Clinical and Laboratory Standards Institute.
CLSI. (2021). Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100. In Wayne, PA: Clinical and Laboratory Standards Institute. http://www.emeraldinsight.com/doi/10.1108/08876049410065598
de Lima, R. M. T., dos Reis, A. C., de Oliveira Santos, J. V., de Oliveira Ferreira, J. R., Lima Braga, A., de Oliveira Filho, J. W. G., de Menezes, A. A. P. M., da Mata, A. M. O. F., de Alencar, M. V. O. B., do Nascimento Rodrigues, D. C., Pinheiro Ferreira, P. M., de Jesus Aguiar dos Santos Andrade, T., Ramos Gonçalves, J. C., Carneiro da Silva, F. C., de Castro e Sousa, J. M., & de Carvalho Melo Cavalcante, A. A. (2019). Toxic, cytogenetic and antitumor evaluations of [6]-gingerol in non-clinical in vitro studies. Biomedicine and Pharmacotherapy, 115, 108873. https://doi.org/10.1016/j.biopha.2019.108873
Dembetembe, T. T., Rademan, S., Twilley, D., Banda, G. W., Masinga, L., Lall, N., & Kritzinger, Q. (2023). Antimicrobial and cytotoxic effects of medicinal plants traditionally used for the treatment of sexually transmitted diseases. South African Journal of Botany, 154, 300–308. https://doi.org/10.1016/j.sajb.2023.01.042
Edwin, E., Sheeja, E., & Toppo, E. (2007). Anti-diarrhoeal, anti ulcer and antimicrobial activities of leaves of Bougainvillea glabra Choisy. Ars Pharm, 48(2), 135–144.
Fan, G. F., Xu, Z. G., Liu, X. S., Yin, W., Sun, L. H., Wu, D., Wei, M. Q., Wang, W., & Cai, Y. H. (2023). Antifungal Efficacy of Gallic Acid Extracted From Pomegranate Peel Against Trichophyton rubrum: In Vitro Case Study. In Natural Product Communications (Vol. 18, Issue 1). cited. https://doi.org/10.1177/1934578X221148607
Fartyal, M. (2016). Allamanda cathartica Linn.: Extraction and pharmaceutical evaluation of various extracts of leaves and flowers. International Journal of Current Pharmaceutical Review and Research, 8(4), 28–32. https://doi.org/10.22159/ijcpr.2016v8i4.15272
Fotsing Yannick Stéphane, F., Kezetas Jean Jules, B., El-Saber Batiha, G., Ali, I., & Ndjakou Bruno, L. (2022). Extraction of Bioactive Compounds from Medicinal Plants and Herbs. In Natural Medicinal Plants. https://doi.org/10.5772/intechopen.98602
Giesey, R. L., Mehrmal, S., Uppal, P., & Delost, G. (2021). Global Burden of Skin and Subcutaneous Disease: A Longitudinal Analysis from the Global Burden of Disease Study From 1990-2017. SKIN The Journal of Cutaneous Medicine, 5(2), 125–136. https://doi.org/10.25251/skin.5.2.7
Giovagnoni, G., Tugnoli, B., Piva, A., & Grilli, E. (2022). Dual Antimicrobial Effect of Medium-Chain Fatty Acids against an Italian Multidrug Resistant Brachyspira hyodysenteriae Strain. Microorganisms, 10(2). https://doi.org/10.3390/microorganisms10020301
González-Fernández, M. J., Manzano-Agugliaro, F., Zapata-Sierra, A., Belarbi, E. H., & Guil-Guerrero, J. L. (2020). Green argan oil extraction from roasted and unroasted seeds by using various polarity solvents allowed by the EU legislation. Journal of Cleaner Production, 276, 123081. https://doi.org/10.1016/j.jclepro.2020.123081
Indrayanto, G., Putra, G. S., & Suhud, F. (2021). Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles of Drug Substances, Excipients and Related Methodology, 46(21), 273–307. https://doi.org/10.1016/bs.podrm.2020.07.005
Jaafar, N., Hamid, K. A., Haslinda, F., Hatta, M., Mahamood, M., & Faiz, M. (2023). Phytochemical Constituents and Anti-Dermatophyte Activity of Pandanus amaryllifolius ( Roxb .) Leaf Extracts. Malaysian Journal of Medicine and Health Sciences, 19 Supp 7(June), 57–59.
Jartarkar, S. R., Patil, A., Goldust, Y., Cockerell, C. J., Schwartz, R. A., Grabbe, S., & Goldust, M. (2022). Pathogenesis, Immunology and Management of Dermatophytosis. Journal of Fungi, 8(1), 21. https://doi.org/10.3390/jof8010039
Joseph, N., Kumar, G., & Nelliyanil, M. (2014). Skin diseases and conditions among students of a medical college in southern India. Indian Dermatology Online Journal, 5(1), 19. https://doi.org/10.4103/2229-5178.126023
Kamran, R. M., Khaliq, H. A., & Uzair, M. (2020). Pharmacognostic and phytochemical studies on Plumeria obtusa L. The Journal of Phytopharmacology, 9(2), 120–124. https://doi.org/10.31254/phyto.2020.9208
Kowalewska, B., Jankowiak, B., Krajewska-Kułak, E., Khvorik, D. F., & Niczyporuk, W. (2021). Quality of life in skin diseases as perceived by patients and nurses. In Postepy Dermatologii i Alergologii (Vol. 37, Issue 6, pp. 956–961). https://doi.org/10.5114/ada.2019.86182
Mannan, M., Alam, M., Mustari, F., Kudrat-E-Zahan, M., Ali, R., Haque, A., Zaman, S., & Talukder, D. (2017). In vitro Antioxidant, Antimicrobial, Insecticidal and Cytotoxic Activities of the Medicinal Plants: Allamanda cathartica and Mimusops elengi. European Journal of Medicinal Plants, 20(4), 1–12. https://doi.org/10.9734/ejmp/2017/35730
Mehta, S., Roy, S., & Chowdhary, A. (2017). Use of rapid fluorescent focus inhibition test (RFFIT) for in vitro evaluation of anti-rabies activity. VirusDisease, 28(2), 127–132. https://doi.org/10.1007/s13337-017-0371-y
Mustarichie, R., Sulistyaningsih, S., & Runadi, D. (2020). Antibacterial Activity Test of Extracts and Fractions of Cassava Leaves (Manihot esculenta Crantz) against Clinical Isolates of Staphylococcus epidermidis and Propionibacterium acnes Causing Acne. International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/1975904
Perveen, S., Nadeem, R., Rehman, S. ur, Afzal, N., Anjum, S., Noreen, S., Saeed, R., Amami, M., Al-Mijalli, S. H., & Iqbal, M. (2022). Green synthesis of iron (Fe) nanoparticles using Plumeria obtusa extract as a reducing and stabilizing agent: Antimicrobial, antioxidant and biocompatibility studies. Arabian Journal of Chemistry, 15(5), 103764. https://doi.org/10.1016/j.arabjc.2022.103764
Petricevich, V. L., & Abarca-Vargas, R. (2019). Allamanda cathartica: A review of the phytochemistry, pharmacology, toxicology, and biotechnology. In Molecules (Vol. 24, Issue 7). https://doi.org/10.3390/molecules24071238
Pfaller, M. A., Sheehan, D. J., & Rex, J. H. (2004). Determination of Fungicidal Activities against Yeasts and Molds: Lessons Learned from Bactericidal Testing and the Need for Standardization. Clinical Microbiology Reviews, 17(2), 268–280. https://doi.org/10.1128/CMR.17.2.268-280.2004
Prasitpuriprecha, N., Santaweesuk, S., Boonkert, P., & Chamnan, P. (2022). Prevalence and DALYs of skin diseases in Ubonratchathani based on real-world national healthcare service data. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-20237-0
Pulsipher, K. J., Szeto, M. D., Rundle, C. W., Presley, C. L., Laughter, M. R., & Dellavalle, R. P. (2021). Global Burden of Skin Disease Representation in the Literature: Bibliometric Analysis. JMIR Dermatology, 4(2). https://doi.org/10.2196/29282
Răileanu, M., Borlan, R., Campu, A., Janosi, L., Turcu, I., Focsan, M., & Bacalum, M. (2023). No country for old antibiotics! Antimicrobial peptides (AMPs) as next-generation treatment for skin and soft tissue infection. International Journal of Pharmaceutics, 642, 123169. https://doi.org/10.1016/j.ijpharm.2023.123169
Rajamanickam, K., & Sudha, S. S. (2013). In-vitro antimicrobial activity and in-vivo toxicity of Moringa oleifera and Allamanda cathartica against multiple drug resistant clinical pathogens. International Journal of Pharma and Bio Sciences, 4(1), 768–775.
Rajput, M., & Kumar, N. (2020). Medicinal plants: A potential source of novel bioactive compounds showing antimicrobial efficacy against pathogens infecting hair and scalp. Gene Reports, 21, 100879. https://doi.org/10.1016/j.genrep.2020.100879
Riaz, M., Fatima, H., Misbah ur Rehman, M., Qadir, R., Hussain, S., Hafeez, A., & Siddique, A. B. (2021). Appraisal of antioxidant potential and biological studies of bogan bail (Bougainvillea glabra) leaf extracts using different solvents. Czech Journal of Food Sciences, 39(3), 176–180. https://doi.org/10.17221/273/2020-CJFS
Rosalie, S., Lize, C., Laurence, S., Rajae, D., Caroline, A., Katrien, L., & Marie-Pierre, H. (2021). Epidemiology of Dermatophytes in Belgium: A 5 Years’ Survey. Mycopathologia, 186(3), 399–409. https://doi.org/10.1007/s11046-021-00542-4
S. Ramírez-Gómez, X., N. Jiménez-García, S., Beltrán Campos, V., & Lourdes García Campos, M. (2020). Plant Metabolites in Plant Defense Against Pathogens. In Plant Diseases - Current Threats and Management Trends. https://doi.org/10.5772/intechopen.87958
Saini, I., Chauhan, J., & Kaushik, P. (2020). Medicinal Value of Domiciliary Ornamental Plants of the Asteraceae Family. Journal of Young Pharmacists, 12(1), 03–10. https://doi.org/10.5530/jyp.2020.12.2
Silva, A. C. O., Santana, E. F., Saraiva, A. M., Coutinho, F. N., Castro, R. H. A., Pisciottano, M. N. C., Amorim, E. L. C., & Albuquerque, U. P. (2013). Which approach is more effective in the selection of plants with antimicrobial activity? In Evidence-based Complementary and Alternative Medicine (Vol. 2013). https://doi.org/10.1155/2013/308980
Singh Gill, J., Chatterjee, M., Baveja, S., Hazra, N., Tandel, K., R, V., & Verma, R. (2023). Clinical study on antifungal drug resistance among cases of dermatophytosis in patients reporting to multiple tertiary care hospitals. Medical Journal Armed Forces India, 79, S244–S249. https://doi.org/10.1016/j.mjafi.2023.01.002
Suwannakul, S., Chaibenjawong, P., & Suwannakul, S. (2018). Antioxidant anti-cancer and antimicrobial activities of ethanol Pandanus amaryllifolius Roxb. leaf extract (in vitro) - A potential medical application. Journal of International Dental and Medical Research, 11(2), 383–389.
Tahiliani, S., Saraswat, A., Lahiri, A. K., Shah, A., Hawelia, D., Shah, G. K., Girdhar, M., Rao, P. N., Raghav, P. A., Agarwal, P., Kharkar, R. D., Gupta, R. P., Udare, S., Hegde, S., & Haldar, S. (2021). Etiological prevalence and antifungal sensitivity patterns of dermatophytosis in India - A multicentric study. Indian Journal of Dermatology, Venereology and Leprology, 87(6), 800–806. https://doi.org/10.25259/IJDVL_1025_19
Tizek, L., Schielein, M. C., Seifert, F., Biedermann, T., Böhner, A., & Zink, A. (2019). Skin diseases are more common than we think: screening results of an unreferred population at the Munich Oktoberfest. Journal of the European Academy of Dermatology and Venereology, 33(7), 1421–1428. https://doi.org/10.1111/jdv.15494
Truong, D. H., Nguyen, D. H., Ta, N. T. A., Bui, A. V., Do, T. H., & Nguyen, H. C. (2019). Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of severinia buxifolia. Journal of Food Quality, 2019. https://doi.org/10.1155/2019/8178294
Upadhyay, A., Chattopadhyay, P., Goyary, D., Mitra Mazumder, P., & Veer, V. (2014). Ixora coccinea Enhances Cutaneous Wound Healing by Upregulating the Expression of Collagen and Basic Fibroblast Growth Factor . ISRN Pharmacology, 2014(14), 1–9. https://doi.org/10.1155/2014/751824
Velázquez-Martínez, V., Valles-Rosales, D., Rodríguez-Uribe, L., Laguna-Camacho, J. R., López-Calderón, H. D., & Delgado, E. (2022). Effect of Different Extraction Methods and Geographical Origins on the Total Phenolic Yield, Composition, and Antimicrobial Activity of Sugarcane Bagasse Extracts. Frontiers in Nutrition, 9, 834557. https://doi.org/10.3389/fnut.2022.834557
Wong-Deyrup, S. W., Song, X., Ng, T. W., Liu, X. Bin, Zeng, J. G., Qing, Z. X., Deyrup, S. T., He, Z. D., & Zhang, H. J. (2021). Plant-derived isoquinoline alkaloids that target ergosterol biosynthesis discovered by using a novel antifungal screening tool. Biomedicine and Pharmacotherapy, 137, 111348. https://doi.org/10.1016/j.biopha.2021.111348
Yakupu, A., Aimaier, R., Yuan, B., Chen, B., Cheng, J., Zhao, Y., Peng, Y., Dong, J., & Lu, S. (2023). The burden of skin and subcutaneous diseases: findings from the global burden of disease study 2019. In Frontiers in Public Health (Vol. 11). https://doi.org/10.3389/fpubh.2023.1145513
Zhang, X. J., Wang, A. P., Shi, T. Y., Zhang, J., Xu, H., Wang, D. Q., & Feng, L. (2019). The psychosocial adaptation of patients with skin disease: A scoping review. In BMC Public Health (Vol. 19, Issue 1). https://doi.org/10.1186/s12889-019-7775-0
Published
2024-12-18
How to Cite
Shamshul Hakimi, N. E., Zaini, A. Z., & Mustaffa, M. F. (2024). Antimicrobial Prospects of Domesticated Ornamental Leaf Extracts Against Skin Pathogens. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.15057
Section
Research Article