Isolation of flavonoids from the Corncob of Zea mays and evaluation of their anti-oxidant and anti-tyrosinase activities
Abstract
One approach to counteract the activity of the enzyme tyrosinase is by consuming a variety of foods containing high levels of antioxidant compounds. Overexpression of this enzyme can lead to degenerative diseases. Three bioactive compounds, namely Quercetin (CC-01), Kaempferol (CC-02), and Kaempferol-3-o-glycoside (CC-03), have been successfully isolated from corncobs (Zea mays). Centering our attention on the isolated compounds, we proceeded to perform in-vitro examinations on them to ascertain their antioxidant capabilities through the utilization of DPPH, ABTS, and CUPRAC-TEAC assays, employing ascorbic acid and trolox as benchmarks. Furthermore, we evaluated their anti-tyrosinase potential, employing kojic acid as a reference point. Isolation and identification of compounds from corn cobs (Zea mays) and their antioxidant and anti-tyrosinase activities through in-vitro studies. The compounds were isolated using radial chromatography and thin-layer chromatography methods. Their chemical structures were determined through ultraviolet (UV), nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry. In vitro investigations included assessing antioxidant activity via DPPH, ABTS, and CUPRAC-TEAC assays, using ascorbic acid and trolox as positive controls. The anti-tyrosinase activity was also examined, employing kojic acid as a positive control for the isolated compounds derived from corn cobs. All the isolated compounds exhibit significant potential as antioxidants and inhibitors of the tyrosinase enzyme, with quercetin standing out for having the lowest IC50 value in both antioxidant and antityrosinase activities.This study may be an initial approach to define bioactive compounds contained in plants as a candidate for antioxidant and anty-tyrosinase agent in the future.
References
Ameen, A., Saeed, H., Yub, N., Sufian, S., Firdaus, M., Aznan, B., & Harun, N. Y. (2020). IJARET, 11(9), 981–989. https://doi.org/10.34218/IJARET.11.09.2020.096
Aransiola, E. F., Oyewusi, T. F., Osunbitan, J. A., & Ogunjimi, L. A. O. (2019). Effect of binder type, binder concentration and compacting pressure on some physical properties of carbonized corncob briquette. Energy Reports, 5, 909–918. https://doi.org/10.1016/j.egyr.2019.07.011
Arung, E. T., Shimizu, K., Tanaka, H., & Kondo, R. (2010). 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus. Fitoterapia, 81(6), 640–643.
Ashour, A., Amer, M., Marzouk, A., Shimizu, K., Kondo, R., & El-Sharkawy, S. (2013). Corncobs as a potential source of functional chemicals. Molecules, 18(11), 13823–13830. https://doi.org/10.3390/molecules181113823
Boulebd, H. (2020). Comparative study of the radical scavenging behavior of ascorbic acid, BHT, BHA and Trolox: Experimental and theoretical study. J. Mol. Struct., 1201. https://doi.org/10.1016/j.molstruc.2019.127210
de Souza, R. F. V., & De Giovani, W. F. (2004). Antioxidant properties of complexes of flavonoids with metal ions. REDOX REP., 9(2), 97–104. https://doi.org/10.1179/135100004225003897
Dong, J. W., Cai, L., Xing, Y., Yu, J., & Ding, Z. T. (2015). Re-evaluation of ABTS+ Assay for Total Antioxidant Capacity of Natural Products. Nat. Prod. Commun., 10(12), 1934578X1501001239.
El-Din, M. I. G., Youssef, F. S., Ashour, M. L., Eldahshan, O. A., & Singab, A. N. B. (2020). New γ-pyrone glycoside from Pachira glabra and assessment of its gastroprotective activity using an alcohol-induced gastric ulcer model in rats. Food Funct., 11(3), 1958–1965.
FAO. (2024). FAOSTAT Database. License: CC BY-NC-SA 3.0 IGO. Http://Www.fao.org/Faostat/En/#data.
Feng, W., Hao, Z., & Li, M. (2017). Isolation and Structure Identification of Flavonoids. In Flavonoids - From Biosynthesis to Human Health. InTech. https://doi.org/10.5772/67810
Gandam, P. K., Chinta, M. L., Pabbathi, N. P. P., Baadhe, R. R., Sharma, M., Thakur, V. K., Sharma, G. D., Ranjitha, J., & Gupta, V. K. (2022). Second-generation bioethanol production from corncob – A comprehensive review on pretreatment and bioconversion strategies, including techno-economic and lifecycle perspective. Ind. Crops Prods., 186, 115245. https://doi.org/https://doi.org/10.1016/j.indcrop.2022.115245
Ghosh, N., Chakraborty, T., Mallick, S., Mana, S., Singha, D., Ghosh, B., & Roy, S. (2015). Synthesis, characterization and study of antioxidant activity of quercetin-magnesium complex. Spectrochim. Acta - A: Mol. Biomol. Spectrosc., 151, 807–813. https://doi.org/10.1016/j.saa.2015.07.050
Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Arch. Toxicol. (Vol. 94, Issue 3, pp. 651–715). Springer. https://doi.org/10.1007/s00204-020-02689-3
Gülçin, I., Topal, F., Çakmakçi, R., Bilsel, M., Gören, A. C., & Erdogan, U. (2011). Pomological Features, Nutritional Quality, Polyphenol Content Analysis, and Antioxidant Properties of Domesticated and 3 Wild Ecotype Forms of Raspberries (Rubus idaeusL.). J. Food Sci., 76(4). https://doi.org/10.1111/j.1750-3841.2011.02142.x
Ibrahim, M. I. J., Sapuan, S. M., Zainudin, E. S., & Zuhri, M. Y. M. (2019). Potential of using multiscale corn husk fiber as reinforcing filler in cornstarch-based biocomposites. Int. J. Biol. Macromol., 139, 596–604. https://doi.org/10.1016/j.ijbiomac.2019.08.015
Indarti, K., Apriani, E. F., Wibowo, A. E., & Simanjuntak, P. (2019). Antioxidant Activity of Ethanolic Extract and Various Fractions from Green Tea (Camellia sinensis L.) Leaves. Phcog J., 11(4), 771–776. https://doi.org/10.5530/pj.2019.11.122
Kaszycki, P., Głodniok, M., & Petryszak, P. (2021). Towards a bio-based circular economy in organic waste management and wastewater treatment – The Polish perspective. N Biotechnol., 61, 80–89. https://doi.org/10.1016/j.nbt.2020.11.005
Krishna Koundinya, K., Dobhal, P., Ahmad, T., Mondal, S., Kumar Sharma, A., & Kumar Singh, V. (2023). A technical review on thermochemical pathways for production of energy from corncob residue. Renew. Energy Focus, 44, 174–185. https://doi.org/https://doi.org/10.1016/j.ref.2022.12.007
Lee, H. P., Kim, D. S., Park, S. H., Shin, C. Y., Woo, J. J., Kim, J. W., An, R. B., Lee, C., & Cho, J. Y. (2022). Antioxidant Capacity of Potentilla paradoxa Nutt. and Its Beneficial Effects Related to Anti‐Aging in HaCaT and B16F10 Cells. Plants, 11(7). https://doi.org/10.3390/plants11070873
Lin, L. jing, Huang, X. bing, & Lv, Z. cheng. (2016). Isolation and identification of flavonoids components from Pteris vittata L. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-3308-9
Maharramova, G., Taslimi, P., Sujayev, A., Farzaliyev, V., Durmaz, L., & Gulçin, İ. (2018). Synthesis, characterization, antioxidant, antidiabetic, anticholinergic, and antiepileptic properties of novel N-substituted tetrahydropyrimidines based on phenylthiourea. J. Biochem. Mol. Toxicol., 32(12). https://doi.org/10.1002/jbt.22221
Montoro, P., Braca, A., Pizza, C., & De Tommasi, N. (2005). Structure-antioxidant activity relationships of flavonoids isolated from different plant species. Food Chem., 92(2), 349–355. https://doi.org/10.1016/j.foodchem.2004.07.028
More, G. K., & Makola, R. T. (2020). In-vitro analysis of free radical scavenging activities and suppression of LPS-induced ROS production in macrophage cells by Solanum sisymbriifolium extracts. Sci. Rep., 10(1). https://doi.org/10.1038/s41598-020-63491-w
Osw, P., & Hussain, F. (2020). Isolation of Kaempferol 3-O-Rutinoside from Kurdish Plant Anchusa Italica Retz. and Bioactivity of Some Extracts. EAJSE., 6, 141–156. https://doi.org/10.23918/eajse.v6i2p141
Park, S., Jegal, J., Chung, K. W., Jung, H. J., Noh, S. G., Chung, H. Y., Ahn, J., Kim, J., & Yang, M. H. (2018). Isolation of tyrosinase and melanogenesis inhibitory flavonoids from Juniperus chinensis fruits. Biosci. Biotechnol. Biochem., 82(12), 2041–2048. https://doi.org/10.1080/09168451.2018.1511367
Peng, Z., Wang, G., Zeng, Q. H., Li, Y., Wu, Y., Liu, H., Wang, J. J., & Zhao, Y. (2021). Synthesis, antioxidant and anti-tyrosinase activity of 1,2,4-triazole hydrazones as antibrowning agents. Food Chem., 341. https://doi.org/10.1016/j.foodchem.2020.128265
Rao, H., Ahmad, S., Y.Aati, H., Basit, A., Ahmad, I., Ahmad Ghalloo, B., Nadeem Shehzad, M., Nazar, R., Zeeshan, M., Nasim, M. J., & ur Rehman Khan, K. (2023). Phytochemical screening, biological evaluation, and molecular docking studies of aerial parts of Trigonella hamosa (branched Fenugreek). Arab. J. Chem., 16(7), 104795. https://doi.org/https://doi.org/10.1016/j.arabjc.2023.104795
Rodríguez-Arce, E., & Saldías, M. (2021). Antioxidant properties of flavonoid metal complexes and their potential inclusion in the development of novel strategies for the treatment against neurodegenerative diseases. In Biomed and Pharmacother., (Vol. 143). Elsevier Masson s.r.l. https://doi.org/10.1016/j.biopha.2021.112236
Santolini, E., Bovo, M., Barbaresi, A., Torreggiani, D., & Tassinari, P. (2021). Turning agricultural wastes into biomaterials: Assessing the sustainability of scenarios of circular valorization of corn cob in a life-cycle perspective. Appl. Sci. (Switzerland), 11(14). https://doi.org/10.3390/app11146281
Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. J. Funct. Foods., (Vol. 18, pp. 757–781). Elsevier Ltd. https://doi.org/10.1016/j.jff.2015.01.047
Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol., 22(3), 1315–1324. https://doi.org/10.1111/gcb.13178
Tajuddeen, N., Swart, T., Hoppe, H. C., & van Heerden, F. R. (2021). Antiplasmodial and Cytotoxic Activities of Extract and Compounds from Ozoroa obovata (Oliv.) R. & A. Fern. var. obovata. Chem. Biodivers., 18(8). https://doi.org/10.1002/cbdv.202100240
Tiammee, S., & Likasiri, C. (2020). Sustainability in corn production management: A multi-objective approach. J. Clean. Prod., 257. https://doi.org/10.1016/j.jclepro.2020.120855
Xu, D., Hu, M. J., Wang, Y. Q., & Cui, Y. L. (2019). Antioxidant activities of quercetin and its complexes for medicinal application. In Molecules (Vol. 24, Issue 6). MDPI AG. https://doi.org/10.3390/molecules24061123
Zhang, L., Zhao, X., Tao, G.-J., Chen, J., & Zheng, Z.-P. (2017). Investigating the inhibitory activity and mechanism differences between norartocarpetin and luteolin for tyrosinase: A combinatory kinetic study and computational simulation analysis. Food Chem., 223, 40–48. https://doi.org/https://doi.org/10.1016/j.foodchem.2016.12.017