Systematic Review : Cost-Effectiveness Analysis of Artificial Intelligence in Cancer Treatment

  • Ageng Aji Milendi Faculty of Pharmacy, Jember University, Sumbersari, Jember, East Java, Indonesia 68121
  • Evi Umayah Ulfa Jember University
  • Mark Niño B. Melgo University of San Carlos
  • Afifah Machlaurin University of Jember
Keywords: Cost-effectiveness analysis, Cancer, Artificial intelligence, Systematic review

Abstract

Cancer is one of the leading causes of death and is estimated to cause huge global economic losses. Artificial intelligence (AI) has massively assisted in the diagnosis, prognosis, and determination of the most effective therapy for cancer patients. The utilization of AI is estimated to reduce healthcare expenditures. This study aimed to systematically review the implementation of AI and its cost-effectiveness in cancer treatment. The study followed PRISMA guidelines and utilized the PubMed database. The search strategy was conducted up to 2 September 2023 using three main keywords; “Cost-effectiveness analysis”, “Cancer”, and “Artificial intelligence”. From 1746 retrieved articles, a total of 11 articles were included in the analysis. Studies found two types of AI interventions in cancer; screening type intervention(n = 6; 55%) and surgery type (n = 5; 45%). Prostate cancer was the most frequently studied (n = 3; 27%). The cost-effectiveness analysis showed that the implementation of AI was cost-effective (n=5, 46%), particularly in cancer screening intervention. The review highlights two main groups of AI interventions in cancer care: screening and cancer surgery. From a cost-effectiveness point of view, AI intervention in screening was the most cost-effective strategy in cancer. On the other hand, the AI implementation in surgery showed inconsistent findings, with many studies not fully addressing the full economic evaluation.

Author Biographies

Ageng Aji Milendi , Faculty of Pharmacy, Jember University, Sumbersari, Jember, East Java, Indonesia 68121

Faculty of Pharmacy, Jember University, Sumbersari, Jember, East Java, Indonesia 68121

Evi Umayah Ulfa , Jember University

Faculty of Pharmacy, Jember University, Sumbersari, Jember, East Java, Indonesia 68121

Mark Niño B. Melgo , University of San Carlos

Department of Pharmacy, School of Health Care Professions, University of San Carlos, Nasipit, Talamban, Cebu, 6000, The Philippines

References

Aikemu, B., Xue, P., Hong, H., Jia, H., Wang, C., Li, S., Huang, L., Ding, X., Zhang, H., Cai, G., Lu, A., Xie, L., Li, H., Zheng, M., & Sun, J. (2021). Artificial Intelligence in Decision-Making for Colorectal Cancer Treatment Strategy: An Observational Study of Implementing Watson for Oncology in a 250-Case Cohort. Frontiers in Oncology, 10. https://doi.org/10.3389/FONC.2020.594182/PDF
Alnasser, B. (2023). The Economic Impact of Artificial Intelligence on Healthcare: A Literature Review. E-Health Telecommunication Systems and Networks, 12(3), 35–48. https://doi.org/10.4236/ETSN.2023.123003
American Society of Clinical Oncology. (2023). Prostate Cancer: Statistics | Cancer.Net. https://www.cancer.net/cancer-types/prostate-cancer/statistics
Aung, Y. Y. M., Wong, D. C. S., & Ting, D. S. W. (2021). The promise of artificial intelligence: a review of the opportunities and challenges of artificial intelligence in healthcare. British Medical Bulletin, 139(1), 4–15. https://doi.org/10.1093/BMB/LDAB016
Balthazar, P., Harri, P., Prater, A., & Safdar, N. M. (2018). Protecting Your Patients’ Interests in the Era of Big Data, Artificial Intelligence, and Predictive Analytics. Journal of the American College of Radiology, 15(3), 580–586. https://doi.org/10.1016/J.JACR.2017.11.035
Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G. (2014). Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Affairs (Project Hope), 33(7), 1123–1131. https://doi.org/10.1377/HLTHAFF.2014.0041
Bhinder, B., Gilvary, C., Madhukar, N. S., & Elemento, O. (2021). Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discovery, 11(4), 900. https://doi.org/10.1158/2159-8290.CD-21-0090
Briganti, G., & Le Moine, O. (2020). Artificial Intelligence in Medicine: Today and Tomorrow. Frontiers in Medicine, 7, 509744. https://doi.org/10.3389/FMED.2020.00027/BIBTEX
Burati, M., Tagliabue, F., Lomonaco, A., Chiarelli, M., Zago, M., Cioffi, G., & Cioffi, U. (2022). Artificial intelligence as a future in cancer surgery. Http://Www.Wjgnet.Com/, 3(1), 11–16. https://doi.org/10.35713/AIC.V3.I1.11
Cabral, B. P., Braga, L. A. M., Syed-Abdul, S., & Mota, F. B. (2023). Future of Artificial Intelligence Applications in Cancer Care: A Global Cross-Sectional Survey of Researchers. Current Oncology, 30(3), 3432–3446. https://doi.org/10.3390/CURRONCOL30030260/S1
Carta, A., & Conversano, C. (2020). On the Use of Markov Models in Pharmacoeconomics: Pros and Cons and Implications for Policy Makers. Frontiers in Public Health, 8, 569500. https://doi.org/10.3389/FPUBH.2020.569500/PDF
Chassagnon, G., De Margerie-Mellon, C., Vakalopoulou, M., Marini, R., Hoang-Thi, T. N., Revel, M. P., & Soyer, P. (2023). Artificial intelligence in lung cancer: current applications and perspectives. Japanese Journal of Radiology, 41(3), 235–244. https://doi.org/10.1007/S11604-022-01359-X/FIGURES/4
Chen, M., & Decary, M. (2020). Artificial intelligence in healthcare: An essential guide for health leaders. Healthcare Management Forum, 33(1), 10–18. https://doi.org/10.1177/0840470419873123
Chen, S., Cao, Z., Prettner, K., Kuhn, M., Yang, J., Jiao, L., Wang, Z., Li, W., Geldsetzer, P., Bärnighausen, T., Bloom, D. E., & Wang, C. (2023). Estimates and Projections of the Global Economic Cost of 29 Cancers in 204 Countries and Territories From 2020 to 2050. JAMA Oncology, 9(4), 465–472. https://doi.org/10.1001/JAMAONCOL.2022.7826
Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94. https://doi.org/10.7861/FUTUREHOSP.6-2-94
Debela, D. T., Muzazu, S. G. Y., Heraro, K. D., Ndalama, M. T., Mesele, B. W., Haile, D. C., Kitui, S. K., & Manyazewal, T. (2021). New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Medicine, 9. https://doi.org/10.1177/20503121211034366
Dilsizian, S. E., & Siegel, E. L. (2014). Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Current Cardiology Reports, 16(1). https://doi.org/10.1007/S11886-013-0441-8
Dixon, S., Hill, H., Flight, L., Khetrapal, P., Ambler, G., Williams, N. R., Brew-Graves, C., Kelly, J. D., Catto, J. W. F., Groves, E. R., Goodwin, L., Willson, J., Ravencroft, P., Kennish, S., Rosario, D. J., Torrington, C., Nair, R., Thurairaja, R., Amery, S., … Tan, M. (2023). Cost-Effectiveness of Robot-Assisted Radical Cystectomy vs Open Radical Cystectomy for Patients With Bladder Cancer. JAMA Network Open, 6(6), e2317255. https://doi.org/10.1001/jamanetworkopen.2023.17255
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/S41591-018-0316-Z
Frampton, G., Whaley, P., Bennett, M., Bilotta, G., Dorne, J. L. C. M., Eales, J., James, K., Kohl, C., Land, M., Livoreil, B., Makowski, D., Muchiri, E., Petrokofsky, G., Randall, N., & Schofield, K. (2022). Principles and framework for assessing the risk of bias for studies included in comparative quantitative environmental systematic reviews. Environmental Evidence, 11(1), 1–23. https://doi.org/10.1186/S13750-022-00264-0/TABLES/8
Gomez Rossi, J., Rojas-Perilla, N., Krois, J., & Schwendicke, F. (2022). Cost-effectiveness of Artificial Intelligence as a Decision-Support System Applied to the Detection and Grading of Melanoma, Dental Caries, and Diabetic Retinopathy. JAMA Network Open. https://doi.org/10.1001/jamanetworkopen.2022.0269
Gore, J. C. (2020). Artificial intelligence in medical imaging. Magnetic Resonance Imaging, 68, A1–A4. https://doi.org/10.1016/J.MRI.2019.12.006
Hamabe, A., Ishii, M., Kamoda, R., Sasuga, S., Okuya, K., Okita, K., Akizuki, E., Miura, R., Korai, T., & Takemasa, I. (2022). Artificial intelligence-based technology to make a three-dimensional pelvic model for preoperative simulation of rectal cancer surgery using MRI. Annals of Gastroenterological Surgery, 6(6), 788–794. https://doi.org/10.1002/AGS3.12574
Hamet, P., & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism: Clinical and Experimental, 69S, S36–S40. https://doi.org/10.1016/J.METABOL.2017.01.011
Hashimoto, D. A., Rosman, G., Rus, D., & Meireles, O. R. (2018). Artificial Intelligence in Surgery: Promises and Perils. Annals of Surgery, 268(1), 70–76. https://doi.org/10.1097/SLA.0000000000002693
He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine 2019 25:1, 25(1), 30–36. https://doi.org/10.1038/s41591-018-0307-0
Hee Lee, D., & Yoon, S. N. (2021). Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges. International Journal of Environmental Research and Public Health, 18(1), 1–18. https://doi.org/10.3390/IJERPH18010271
Hohwü, L., Borre, M., Ehlers, L., & Venborg Pedersen, K. (2011). A short-term cost-effectiveness study comparing robot-assisted laparoscopic and open retropubic radical prostatectomy. Journal of Medical Economics, 14(4), 403–409. https://doi.org/10.3111/13696998.2011.586621
Iqbal, M. J., Javed, Z., Sadia, H., Qureshi, I. A., Irshad, A., Ahmed, R., Malik, K., Raza, S., Abbas, A., Pezzani, R., & Sharifi-Rad, J. (2021). Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell International, 21(1), 1–11. https://doi.org/10.1186/S12935-021-01981-1/FIGURES/4
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/SVN-2017-000101
Juwara, L., Arora, N., Gornitsky, M., Saha-Chaudhuri, P., & Velly, A. M. (2020). Identifying predictive factors for neuropathic pain after breast cancer surgery using machine learning. International Journal of Medical Informatics, 141, 104170. https://doi.org/10.1016/J.IJMEDINF.2020.104170
Kaul, R., Ossai, C., Forkan, A. R. M., Jayaraman, P. P., Zelcer, J., Vaughan, S., & Wickramasinghe, N. (2023). The role of AI for developing digital twins in healthcare: The case of cancer care. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(1), e1480. https://doi.org/10.1002/WIDM.1480
Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17(1), 1–9. https://doi.org/10.1186/S12916-019-1426-2/PEER-REVIEW
Kim, Y., Kim, Y., Lee, H. J., Lee, S., Park, S. Y., Oh, S. H., Jang, S., Lee, T., Ahn, J., & Shin, S. (2022). The Primary Process and Key Concepts of Economic Evaluation in Healthcare. Journal of Preventive Medicine and Public Health, 55(5), 415. https://doi.org/10.3961/JPMPH.22.195
Kimura, T. (2012). East meets West: ethnic differences in prostate cancer epidemiology between East Asians and Caucasians. Chinese Journal of Cancer, 31(9), 421. https://doi.org/10.5732/CJC.011.10324
Komorowski, M., & Raffa, J. (2016). Markov models and cost effectiveness analysis: Applications in medical research. Secondary Analysis of Electronic Health Records, 351–367. https://doi.org/10.1007/978-3-319-43742-2_24/TABLES/11
Krittanawong, C., Johnson, K. W., Hershman, S. G., & Tang, W. H. W. (2018). Big data, artificial intelligence, and cardiovascular precision medicine. Expert Review of Precision Medicine and Drug Development, 3(5), 305–317. https://doi.org/10.1080/23808993.2018.1528871
Li, W., Zhang, Y., & Chen, F. (2023). ChatGPT in Colorectal Surgery: A Promising Tool or a Passing Fad? Annals of Biomedical Engineering, 51(9), 1892–1897. https://doi.org/10.1007/S10439-023-03232-Y
Lindenberg, M. A., Retèl, V. P., van der Poel, H. G., Bandstra, F., Wijburg, C., & van Harten, W. H. (2022). Cost-utility analysis on robot-assisted and laparoscopic prostatectomy based on long-term functional outcomes. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-10746-3
Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J., Bruynseels, A., Mahendiran, T., Moraes, G., Shamdas, M., Kern, C., Ledsam, J. R., Schmid, M. K., Balaskas, K., Topol, E. J., Bachmann, L. M., Keane, P. A., & Denniston, A. K. (2019). A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. The Lancet Digital Health, 1(6), e271–e297. https://doi.org/10.1016/S2589-7500(19)30123-2/ATTACHMENT/49AB10F2-3AA4-4101-A155-11A5ED6772BC/MMC1.PDF
Liu, X., Rivera, S. C., Moher, D., Calvert, M. J., Denniston, A. K., & SPIRIT-AI and CONSORT-AI Working Group. (2020). Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension. BMJ (Clinical Research Ed.), 370(9), m3164. https://doi.org/10.1136/bmj.m3164
Luchini, C., Pea, A., & Scarpa, A. (2021). Artificial intelligence in oncology: current applications and future perspectives. British Journal of Cancer 2021 126:1, 126(1), 4–9. https://doi.org/10.1038/s41416-021-01633-1
Maddox, T. M., Rumsfeld, J. S., & Payne, P. R. O. (2019). Questions for Artificial Intelligence in Health Care. JAMA, 321(1), 31–32. https://doi.org/10.1001/JAMA.2018.18932
Majumder, A., & Sen, D. (2021). Artificial intelligence in cancer diagnostics and therapy: current perspectives. Indian Journal of Cancer, 58(4), 481–492. https://doi.org/10.4103/IJC.IJC_399_20
Mehta, A., Cheng Ng, J., Andrew Awuah, W., Huang, H., Kalmanovich, J., Agrawal, A., Abdul-Rahman, T., Hasan, M. M., Sikora, V., & Isik, A. (2022). Embracing robotic surgery in low- and middle-income countries: Potential benefits, challenges, and scope in the future. Annals of Medicine and Surgery, 84, 104803. https://doi.org/10.1016/J.AMSU.2022.104803
Michels, C. T. J., Wijburg, C. J., Hannink, G., Witjes, J. A., Rovers, M. M., Grutters, J. P. C., Helder, S., Venderbosch, G., Calsbeek, H., Onna, I. E. W. van, Barten, E. J., Koldewijn, E. L., Boormans, J. L., Wijsman, B. P., Nooter, R. I., Zwaan, P. J., Slaa, E. te, Meer, S. van der, Klaver, S. O., … Oddens, J. R. (2022). Robot-assisted Versus Open Radical Cystectomy in Bladder Cancer: An Economic Evaluation Alongside a Multicentre Comparative Effectiveness Study. European Urology Focus, 8(3), 739–747. https://doi.org/10.1016/j.euf.2021.06.004
Mital, S., & Nguyen, H. V. (2022). Cost-effectiveness of using artificial intelligence versus polygenic risk score to guide breast cancer screening. BMC Cancer, 22(1). https://doi.org/10.1186/s12885-022-09613-1
Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the Future — Big Data, Machine Learning, and Clinical Medicine. The New England Journal of Medicine, 375(13), 1216. https://doi.org/10.1056/NEJMP1606181
O’Connor, J. P. B., Aboagye, E. O., Adams, J. E., Aerts, H. J. W. L., Barrington, S. F., Beer, A. J., Boellaard, R., Bohndiek, S. E., Brady, M., Brown, G., Buckley, D. L., Chenevert, T. L., Clarke, L. P., Collette, S., Cook, G. J., Desouza, N. M., Dickson, J. C., Dive, C., Evelhoch, J. L., … Waterton, J. C. (2017). Imaging biomarker roadmap for cancer studies. Nature Reviews. Clinical Oncology, 14(3), 169–186. https://doi.org/10.1038/NRCLINONC.2016.162
Okeibunor, J. C., Jaca, A., Iwu-Jaja, C. J., Idemili-Aronu, N., Ba, H., Zantsi, Z. P., Ndlambe, A. M., Mavundza, E., Muneene, D., Wiysonge, C. S., & Makubalo, L. (2023). The use of artificial intelligence for delivery of essential health services across WHO regions: a scoping review. Frontiers in Public Health, 11. https://doi.org/10.3389/FPUBH.2023.1102185/FULL
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 1–11. https://doi.org/10.1186/S13643-021-01626-4/FIGURES/1
Pantanowitz, L., Quiroga-Garza, G. M., Bien, L., Heled, R., Laifenfeld, D., Linhart, C., Sandbank, J., Albrecht Shach, A., Shalev, V., Vecsler, M., Michelow, P., Hazelhurst, S., & Dhir, R. (2020). An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study. The Lancet. Digital Health, 2(8), e407–e416. https://doi.org/10.1016/S2589-7500(20)30159-X
Parikh, R. B., Obermeyer, Z., & Navathe, A. S. (2019). Regulation of predictive analytics in medicine. Science (New York, N.Y.), 363(6429), 810–812. https://doi.org/10.1126/SCIENCE.AAW0029
Radensky, P. W., & Mango, L. J. (1998). Interactive neural-network-assisted screening. An economic assessment. Acta Cytologica, 42(1), 246–252. https://doi.org/10.1159/000331553
Raghupathi, W., & Raghupathi, V. (2014). Big data analytics in healthcare: promise and potential. Health Information Science and Systems, 2(1). https://doi.org/10.1186/2047-2501-2-3
Rai, A., Constantinides, P., & Sarker, S. (2019). Next generation digital platforms : toward human-AI hybrids. https://misq.org/misq/downloads/
Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine Learning in Medicine. The New England Journal of Medicine, 380(14), 1347–1358. https://doi.org/10.1056/NEJMRA1814259
Schechter, C. B. (1996). Cost-effectiveness of rescreening conventionally prepared cervical smears by PAPNET testing. Acta Cytologica, 40(6), 1272–1282. https://doi.org/10.1159/000334021
Sebastian, A. M., & Peter, D. (2022). Artificial Intelligence in Cancer Research: Trends, Challenges and Future Directions. Life, 12(12). https://doi.org/10.3390/LIFE12121991
Sharieff, W., Greenspoon, J. N., Dayes, I., Chow, T., Wright, J., & Lukka, H. (2016). The Technique, Resources and Costs of Stereotactic Body Radiotherapy of Prostate Cancer: A Comparison of Dose Regimens and Delivery Systems. Technology in Cancer Research and Treatment, 15(1), 171–178. https://doi.org/10.7785/tcrt.2012.500431
Sittimart, M., Rattanavipapong, W., Mirelman, A. J., Hung, T. M., Dabak, S., Downey, L. E., Jit, M., Teerawattananon, Y., & Turner, H. C. (2024). An overview of the perspectives used in health economic evaluations. Cost Effectiveness and Resource Allocation, 22(1), 1–13. https://doi.org/10.1186/S12962-024-00552-1/TABLES/3
Smak Gregoor, A. M., Sangers, T. E., Bakker, L. J., Hollestein, L., Uyl-de Groot, C. A., Nijsten, T., & Wakkee, M. (2023). An artificial intelligence based app for skin cancer detection evaluated in a population based setting. NPJ Digital Medicine, 6(1), 90. https://doi.org/10.1038/s41746-023-00831-w
Thiruvengadam, N. R., Coté, G. A., Gupta, S., Rodrigues, M., Schneider, Y., Arain, M. A., Solaimani, P., Serrao, S., Kochman, M. L., & Saumoy, M. (2023). An Evaluation of Critical Factors for the Cost-Effectiveness of Real-Time Computer-Aided Detection: Sensitivity and Threshold Analyses Using a Microsimulation Model. Gastroenterology, 164(6), 906–920. https://doi.org/10.1053/j.gastro.2023.01.027
Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/S41591-018-0300-7
Väänänen, A., Haataja, K., Vehviläinen-Julkunen, K., & Toivanen, P. (2021). AI in healthcare: A narrative review. F1000Research 2021 10:6, 10, 6. https://doi.org/10.12688/f1000research.26997.2
Voets, M. M., Veltman, J., Slump, C. H., Siesling, S., & Koffijberg, H. (2022). Systematic Review of Health Economic Evaluations Focused on Artificial Intelligence in Healthcare: The Tortoise and the Cheetah. Value in Health, 25(3), 340–349. https://doi.org/10.1016/J.JVAL.2021.11.1362
Vu, A. N., Van Hoang, M., Lindholm, L., Sahlen, K. G., Nguyen, C. T. T., & Sun, S. (2024). A systematic review on the direct approach to elicit the demand-side cost-effectiveness threshold: Implications for low- and middle-income countries. PLOS ONE, 19(2), e0297450. https://doi.org/10.1371/JOURNAL.PONE.0297450
Wang, F., & Preininger, A. (2019). AI in Health: State of the Art, Challenges, and Future Directions. Yearbook of Medical Informatics, 28(1), 16–26. https://doi.org/10.1055/S-0039-1677908
Wang, S. H., Chen, G., Zhong, X., Lin, T., Shen, Y., Fan, X., & Cao, L. (2023). Global development of artificial intelligence in cancer field: a bibliometric analysis range from 1983 to 2022. Frontiers in Oncology, 13. https://doi.org/10.3389/FONC.2023.1215729/PDF
Wiegand, T., Kuglitsch, M. M., Leite, A. W., & Quast, B. (2020). Whitepaper for the ITU/WHO Focus Group on Artificial Intelligence for Health.
World Health Organization. (2003). Making choices in health: WHO guide to cost-effectiveness analysis.
World Health Organization. (2022). Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer
Xie, X., Schaink, A. K., Liu, S., Wang, M., & Volodin, A. (2023). Understanding bias in probabilistic analysis in model-based health economic evaluation. European Journal of Health Economics, 24(2), 307–319. https://doi.org/10.1007/S10198-022-01472-8/METRICS
Yu, K. H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719–731. https://doi.org/10.1038/S41551-018-0305-Z
Zhang, Z., Wen, F., Sun, Z., Guo, X., He, T., & Lee, C. (2022). Artificial Intelligence-Enabled Sensing Technologies in the 5G/Internet of Things Era: From Virtual Reality/Augmented Reality to the Digital Twin. Advanced Intelligent Systems, 4(7), 2100228. https://doi.org/10.1002/AISY.202100228
Published
2025-04-09
How to Cite
Ageng Aji Milendi, Evi Umayah Ulfa, Mark Niño B. Melgo, & Machlaurin, A. (2025). Systematic Review : Cost-Effectiveness Analysis of Artificial Intelligence in Cancer Treatment. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.16226
Section
Articles