Influences of Centella Asiatica and Curcuma Longa on Arterial Stiffness in a Hypertensive Animal Model

  • Patonah Hasimun Departement of Pharmacology and Clinical Pharmacy, Bhakti Kencana University, Jl. R.E. Martadinata No.142, Cipedes, Kec. Cipedes, Kab. Tasikmalaya, Jawa Barat 46133
  • Yani Mulyani Departement of Pharmacology and Clinical Pharmacy, Bhakti Kencana University, Jl. R.E. Martadinata No.142, Cipedes, Kec. Cipedes, Kab. Tasikmalaya, Jawa Barat 46133
  • Adinda R Setiawan Departement of Pharmacology and Clinical Pharmacy, Bhakti Kencana University, Jl. R.E. Martadinata No.142, Cipedes, Kec. Cipedes, Kab. Tasikmalaya, Jawa Barat 46133
Keywords: Arterial stiffness, Centella asiatica, Curcuma longa, Hypertension


There is a strong relationship between arterial stiffness and high blood pressure. Arterial stiffness increases the risk of a cardiovascular event and sudden death, especially in hypertensive patients. This study aimed to determine the effective combination of Centella asiatica and Curcuma longa on arterial stiffness in hypertensive animal models. Twenty-five male rats aged 2-3 months were randomly into five groups. The groups comprising the negative control and positive control group (receiving drug carriers), the test drug group receiving captopril 2.5 mg/kg, the combination of Centella asiatica (CA) and Curcuma longa (CL) doses of 50 and 100 mg/kg. Except for the control group, all groups received a high-fat diet and 25% fructose drinking water for 28 days. On day 15, they received test medicines. On days 0, 14, and 28, systolic and diastolic blood pressures, as well as the PWV (pulse wave velocity), were assessed. Nitric oxide levels in serum were measured using Griess reagents on day 28. The results showed that a combination of CA and CL doses of 50 and 100 mg/kg reduced systolic and diastolic blood pressure accompanied by a decrease in PWV and a statistically significant increase in serum NO levels (p <0.05). It concluded that a combination of CA and CL has the potential as antihypertensive, improving arterial elasticity.


Alqahtani, A., Tongkao‐on, W., Li, K. M., Razmovski‐Naumovski, V., Chan, K., & Li, G. Q. (2015). Seasonal variation of triterpenes and phenolic compounds in Australian Centella asiatica (L.) Urb. Phytochemical Analysis, 26(6): 436–443.
Aroor, A., DeMarco, V., Jia, G., Sun, Z., Nistala, R., Meininger, G., & Sowers, J. (2013). The Role of Tissue Renin-Angiotensin-Aldosterone System in the Development of Endothelial Dysfunction and Arterial Stiffness. In Frontiers in Endocrinology (Vol. 4, p. 161).
Atkin, S. L., Katsiki, N., Derosa, G., Maffioli, P., & Sahebkar, A. (2017). Curcuminoids lower plasma leptin concentrations: A meta‐analysis. Phytotherapy Research, 31(12): 1836–1841.
Campbell, M. S., & Fleenor, B. S. (2017). The emerging role of curcumin for improving vascular dysfunction: A review. Critical Reviews in Food Science and Nutrition, 1–10.
Cicero, A. F. G., Fogacci, F., & Colletti, A. (2017). Food and plant bioactives for reducing cardiometabolic disease risk: an evidence based approach. Food & Function, 8(6): 2076–2088.
De Sanctis, M. T., Belcaro, G., Incandela, L., Cesarone, M. R., Griffin, M., Ippolito, E., & Cacchio, M. (2001). Treatment of edema and increased capillary filtration in venous hypertension with total triterpenic fraction of Centella asiatica: a clinical, prospective, placebo-controlled, randomized, dose-ranging trial. Angiology, 52(2_suppl): S55–S59.
Garmana, A. N., Sukandar, E. Y., & Fidrianny, I. (2018). Antihypertension study of anredera cordifolia (ten). V. Steenis extract and its fractions in rats through dexamethasone induction and nitric oxide release. Asian J Pharm Clin Res, 1: 278–282.
Hasimun, P., Mulyani, Y., Sulaeman, A., & Saraswati, D. A. E. (2019). Prevention of Hypertension and Arterial Stiffness by Combination of Centella asiatica and Curcuma longa in Rats. Asian Journal of Biological Sciences, 12(2): 173–179.
Hermann, M., Flammer, A., & Lüscher, T. F. (2006). Nitric oxide in hypertension. Journal of Clinical Hypertension (Greenwich, Conn.), 8(12 Suppl 4): 17–29.
Hunter, K. (2018). Evaluation of the Variation in Growth, Rhizome Yield and RhizomePhytochemical Content among Turmeric (Curcuma Species) GenotypesGrown in North Alabama. Alabama Agricultural and Mechanical University.
Hwang, I.-S., Ho, H., Hoffman, B. B., & Reaven, G. M. (1987). Fructose-induced insulin resistance and hypertension in rats. Hypertension, 10(5): 512–516.
Jadhav, U. M., & Kadam, N. N. (2005). Non-invasive assessment of arterial stiffness by pulse-wave velocity correlates with endothelial dysfunction. Indian Heart Journal, 57(3): 226–232.
Jia, G., Aroor, A. R., Martinez-Lemus, L. A., & Sowers, J. R. (2018). Potential role of antihypertensive medications in preventing excessive arterial stiffening. Current Hypertension Reports, 20(9): 76.
Komnenov, D., Gaudette, J., Zenner, Z., Chen, H., & Rossi, N. (2018). Fructose-induced salt-sensitive hypertension increases aortic stiffness and induces changes in systemic and renal hemodynamics. The FASEB Journal, 32(1_supplement): 714–715.
Mancia, G., Fagard, R., Narkiewicz, K., Redon, J., Zanchetti, A., Böhm, M., Christiaens, T., Cifkova, R., de Backer, G., & Dominiczak, A. (2013). 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Pressure, 22(4): 193–278.
Mussalo, H., Vanninen, E., Ikäheimo, R., Laitinen, T., Laakso, M., Länsimies, E., & Hartikainen, J. (2001). Heart rate variability and its determinants in patients with severe or mild essential hypertension. Clinical Physiology, 21(5): 594–604.
Nicoll, R., & Henein, M. Y. (2018). Caloric restriction and its effect on blood pressure, heart rate variability and arterial stiffness and dilatation: a review of the evidence. International Journal of Molecular Sciences, 19(3): 751.
Palatini, P., & Julius, S. (2004). Elevated heart rate: a major risk factor for cardiovascular disease. Clinical and Experimental Hypertension, 26(7–8): 637–644.
Panchal, S. K., Poudyal, H., Iyer, A., Nazer, R., Alam, A., Diwan, V., Kauter, K., Sernia, C., Campbell, F., Ward, L., Gobe, G., Fenning, A., & Brown, L. (2011). High-carbohydrate High-fat Diet–induced Metabolic Syndrome and Cardiovascular Remodeling in Rats. Journal of Cardiovascular Pharmacology, 57(1).
Pechanova, O., Matuskova, J., Capikova, D., Jendekova, L., Paulis, L., & Simko, F. (2006). Effect of spironolactone and captopril on nitric oxide and S-nitrosothiol formation in kidney of L-NAME-treated rats. Kidney International, 70(1): 170–176.
Poirier, P., Giles, T. D., Bray, G. A., Hong, Y., Stern, J. S., Pi-Sunyer, F. X., & Eckel, R. H. (2006). Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical. Circulation, 113(6): 898–918.
Shapiro, A., Mu, W., Roncal, C., Cheng, K.-Y., Johnson, R. J., & Scarpace, P. J. (2008). Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 295(5): R1370–R1375.
Sharman, J. E., Boutouyrie, P., & Laurent, S. (2017). Arterial (aortic) stiffness in patients with resistant hypertension: from assessment to treatment. Current Hypertension Reports, 19(1): 2.
Tan, I., Spronck, B., Kiat, H., Barin, E., Reesink, K. D., Delhaas, T., Avolio, A. P., & Butlin, M. (2016). Heart rate dependency of large artery stiffness. Hypertension, 68(1): 236–242.
Uddandrao, V. V. S., Rameshreddy, P., Brahmanaidu, P., Ponnusamy, P., Balakrishnan, S., Ramavat, R. N., Swapna, K., Pothani, S., Nemani, H., & Meriga, B. (2019). Anti-obesity efficacy of asiatic acid: down-regulation of adipogenic and inflammatory processes in high fat diet induced obese rats. Archives of Physiology and Biochemistry, 1–10.
Wilkinson, I., & Cockcroft, J. R. (2007). Cholesterol, lipids and arterial stiffness. In Atherosclerosis, Large Arteries and Cardiovascular Risk (Vol. 44, pp. 261–277). Karger Publishers.
Wu, C.-F., Liu, P.-Y., Wu, T.-J., Hung, Y., Yang, S.-P., & Lin, G.-M. (2015). Therapeutic modification of arterial stiffness: an update and comprehensive review. World Journal of Cardiology, 7(11): 742.
Yasurin, P., Sriariyanun, M., & Phusantisampan, T. (2016). The Bioavailability Activity of Centella asiatica. King Mongkut's University of Technology North Bangkok International Journal of Applied Science and Technology, 9(1): 1–9.
Zainol, M. K., Abd-Hamid, A., Yusof, S., & Muse, R. (2003). Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chemistry, 81(4): 575–581.
Zakaria, H., & Hasimun, P. (2017a). Non-invasive pulse wave velocity measurement in mice. Proceedings - 2017 International Seminar on Sensor, Instrumentation, Measurement and Metrology: Innovation for the Advancement and Competitiveness of the Nation, ISSIMM 2017, 2017-Janua.
Zakaria, H., & Hasimun, P. (2017b). Non-invasive pulse wave velocity measurement in mice. 2017 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), 95–98.
How to Cite
Hasimun, P., Mulyani, Y., & Setiawan, A. R. (2021). Influences of Centella Asiatica and Curcuma Longa on Arterial Stiffness in a Hypertensive Animal Model. Indonesian Journal of Pharmacy, 32(4), 484-492.
Research Article