The Metabolite Fingerprints, Antimalarial Activities and Toxicities of Artocarpus Champeden Stembark from Various Regions in Indonesia

Keywords: Artocarpus champeden, metabolite fingerprints, antimalarial, chemometrics


In Indonesia, cempedak (Artocarpus champeden Spreng) stembark from family of moraceae had been traditionally used for malarial treatment. Difference in the location of growth could cause the difference of metabolite fingerprints. As a result, there might be different toxicity and antimalarial activity in the same plants. The goal of this study was to obtain the fingerprints of the metabolites found in A. champeden stembark from different parts of Indonesia in order to authenticate and control the extract's quality. Fingerprints were performed using the HPTLC-Densitometry technique, in vitro toxicity and antimalarial activity were also determined using MTT assay and HRP2 assay. The correlation between metabolite fingerprints, toxicity and antimalarial activity was analysed using chemometrics tools: Principle Component Analysis (PCA), Partial Least Square (PLS) and Hierarchical Clustering Analysis (HCA). As a result, there is significant difference between fingerprints and toxicity profiles of A. champeden (p<0.05), whereas for antimalarial profiles, there is no significant difference between of them (p>0.05). Meanwhile, the nutrients (copper, zinc and manganese) are suspected to be responsible for the metabolite content. Besides morachalcone-A, compounds with Rf values ​​of 0.66 and 0.63 can be proposed as additional markers because they have responsibility for antimalarial activity and toxicity.

Author Biography

Imam Taufik, Laboratory of Herbal and Traditional Medicine, National Agency of Drug and Food Control (BPOM RI), Ambon, 97116, Indonesia




Aslantürk, Ö. S. (2018). In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. Genotoxicity - A Predictable Risk to Our Actual World, 1–19.

Balai Penelitian Tanah. (2005). Analisis Kimia Tanah, Tanaman, Air dan Pupuk. Badan Penelitian Dan Pengembangan Pertanian.

Boonlaksiri, C., Oonanant, W., Kongsaeree, P., Phytochemistry, P. K.-, & 2000, undefined. (2000). An antimalarial stilbene from Artocarpus integer. Phytochemistry, 54(4), 415–417.

Gan, G., Ma, C., & Wu, J. (2007). Data Clustering Theory, Algorithms, and Applications. ASA-SIAM Series on Statistics and Applied Probability.

Hafid, A. F. . A. N. P. . T. L. I. D. Y. A. . H. A. R. . & W. A. (2012). The active marker compound identification of artocarpus champeden spreng. stembark extract, morachalchone a as antimalarial. International Journal of Pharmacy and Pharmaceutical Sciences, 4(5), 246–249.

Hakim, E. H., Fahriyati, A., Kau, M. S., Achmad, S. A., Makmur, L., Ghisalberti, E. L., & Nomura, T. (1999). Artoindonesianins A and B, two new prenylated flavones from the root of Artocarpus champeden. Journal of Natural Products, 62(4), 613–615.

Heyne, K. (1987). Tumbuhan berguna indonesia. In Badan Penelitian dan Pengembangan Kehutanan, Departemen Kehutanan.

Kim, E. J., Kwon, J., Park, S. H., Park, C., Seo, Y. B., Shin, H. K., Kim, H. K., Lee, K. S., Choi, S. Y., Ryu, D. H., & Hwang, G. S. (2011). Metabolite profiling of angelica gigas from different geographical origins using 1H NMR and UPLC-MS analyses. Journal of Agricultural and Food Chemistry, 59(16), 8806–8815.

Lam, D., & Processing, D. W. (2009). Clustering. New Jersey: IEEE Press .

Lazar, G. A., Florina, R., Socaciu, M., & Socaciu, C. (2015). Bioinformatics Tools for Metabolomic Data Processing and Analysis Using Untargeted Liquid Chromatography Coupled With Mass Spectrometry . Animal Science and Biotechnologies , 72(2), 103–115.

Mutiah, R., Hadya, C. M., Burhan Ma’arif, Z. A., Bhagawan, W. S., Annisa, R., Indrawijaya, Y. Y. A., Huwaida, F. I., Ria Ramadhani, D. A., Susilowati, R., & Taufik, I. (2019). Metabolite fingerprintiing of eleutherine palmifolia (L.) merr. By hptlc-densitometry and its correlation with anticancer activities and in Vitro Toxicity. Indonesian Journal of Pharmacy, 30(3).

Noedl, H., Attlmayr, B., Wernsdorfer, W. H., Kollaritsch, H., & Miller, R. S. (2004). A histidine-rich protein 2-based malaria drug sensitivity assay for field use. American Journal of Tropical Medicine and Hygiene, 71(6), 711–714.

R SCHERLIEß. (2011). The MTT assay as tool to evaluate and compare excipient toxicity in vitro on respiratory epithelial cells. International Journal of Pharmaceutics, 411(1–2), 98–105.

Rahajoe, J. S. (2016). Certificate of Determination, Authentication Number 2003/IPH.I.02/If.07/IX/2016. Indonesian Institue of Science.

Reich, E., & Schibli, A. (2007). High-performance thin-layer chromatography for the analysis of medicinal plants. In Thieme.

Sharma, S., & Sharma, S. (1996). Applied multivariate techniques. John Willey & Sons Inc.

Syah, Y. M., Juliawaty, L. D., Achmad, S. A., Hakim, E. H., & Ghisalberti, E. L. (2006). Cytotoxic prenylated flavones from Artocarpus champeden. Journal of Natural Medicines, 60(4), 308–312.

Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research, 6(2), 469–479.

Verma, N., & And, S. S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 105–113.

WHO. (2018). Malaria. World Malaria Report.

Widyawaruyanti, A., Devi, A. P., Fatria, N., Tumewu, L., Tantular, I. S., & Fuad Hafid, A. (2014). IN VITRO ANTIMALARIAL ACTIVITY SCREENING OF SEVERAL INDONESIAN PLANTS USING HRP2 ASSAY. International Journal of Pharmacy and Pharmaceutical Science, 6, 125–128.

Widyawaruyanti, A., Khasanah, U., Tumewu, L., Ilmi, H., Fuad Hafid, A., & Tantular, I. S. (2015). ANTIMALARIAL ACTIVITY AND CYTOTOXICITY STUDY OF ETHANOL EXTRACT AND FRACTION FROM ALECTRYON SERRATUS LEAVES. International Journal of Pharmacy and Pharmaceutical Sciences, 7, 250–253.

Widyawaruyanti, A., Subehan, Kalauni, S. K., Awale, S., Nindatu, M., Zaini, N. C., Syafruddin, D., Asih, P. B. S., Tezuka, Y., & Kadota, S. (2007). New prenylated flavones from Artocarpus champeden, and their antimalarial activity in vitro. Journal of Natural Medicines, 61(4), 410–413.

Wiley, J., Figueiredo, A. C., Barroso, J. G., Pedro, L. G., & Scheffer, J. J. C. (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils Factors affecting volatile and essential oil production in plants. FLAVOUR AND FRAGRANCE JOURNAL Flavour Fragr. J, 23(4), 213–226.

Yulia I, I., Intan P, D., Wongso, S., W Prajogo, B. E., & Indrayanto, G. (2015). Metabolite Profiling of Justicia gendarussa Burm. f. Leaves Using UPLC-UHR-QTOF-MS. Scientia Pharmaceutica, 83, 489–500.

How to Cite
Taufik, I., Widyawaruyanti, A., & Yuwono, M. (2021). The Metabolite Fingerprints, Antimalarial Activities and Toxicities of Artocarpus Champeden Stembark from Various Regions in Indonesia. Indonesian Journal of Pharmacy, 32(4), 503-513.
Research Article