The Pharmacognostic Standards, Antioxidant and Antidiabetic Activities, and Hepatic Safety Profile of An Indonesian Antidiabetic Polyherbal Formulation

  • Dwi Hartanti Universitas Muhammadiyah Purwokerto
  • Nutputsorn Chatsumpun Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, 447 Thanon Si Ayutthaya, Thung Phaya Thai, Ratchathewi 10400, Bangkok, Thailand
  • Khanit Sa-ngiamsuntorn Department of Biochemistry, Faculty of Pharmacy, Mahidol University, 447 Thanon Si Ayutthaya, Thung Phaya Thai, Ratchathewi 10400, Bangkok, Thailand
  • Wasu Supharattanasitthi Department of Physiology, Faculty of Pharmacy, Mahidol University, 447 Thanon Si Ayutthaya, Thung Phaya Thai, Ratchathewi 10400, Bangkok, Thailand
  • Worawan Kitphati Department of Physiology, Faculty of Pharmacy, Mahidol University, 447 Thanon Si Ayutthaya, Thung Phaya Thai, Ratchathewi 10400, Bangkok, Thailand
  • Penchom Peungvicha Department of Physiology, Faculty of Pharmacy, Mahidol University, 447 Thanon Si Ayutthaya, Thung Phaya Thai, Ratchathewi 10400, Bangkok, Thailand
Keywords: Science-based jamu development, Polyherbal formulation, Antioxidant, Pharmacognostic specification, Hepatotoxic effect


The excessive oxidative processes and the lack of cellular antioxidative mechanisms are significantly observed in diabetes. In addition, long-term medication required for the treatment might harm the hepatic tissues. This study evaluated the selected pharmacognostic characters, antioxidant activities, total phenolic content, and the hepatic safety of a polyherbal formulation containing seven plant constituents used by Klinik Wisata Kesehatan Jamu Kalibakung, Tegal, Indonesia, to treat diabetes patients. The pharmacognostic properties of the formulation were characterized according to the WHO quality control methods for herbal materials. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH RSA), ferric reducing antioxidant power (FRAP), and total phenolic content (TPC) were evaluated as per the standard method. The effect of formulation on the hepatic HepG2 cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. The pharmacognostic properties of the formulation specified as follow: foreign matters (1.32±0.05%), loss on drying (11.50±0.07%), total ash (5.68±0.07%), acid-insoluble ash (0.94±0.04%), water-soluble extractable (18.22±0.60%), and ethanol-soluble extractable (16.90±0.77%). The ethanol extract showed a superior DPPH RSA (960.70±2.58 mM Trolox equivalent (TE)/ g dry weight (DW)), FRAP (1112.69±8.39 mM TE/g DW), and TPC (1768.40±32.40 mg gallic acid equivalent (GAE)/g DW) over its water counterpart. However, the water extract was safer for HepG2 cells than the ethanol one, with the IC50 values of 218.25±14.03 and 40.24±3.53 µg/ml, respectively. This study set the pharmacognostic standards for an antidiabetic polyherbal formulation with excellent antioxidant activities, in which its traditional use as a decoction was safe for the hepatic cells.

Author Biography

Penchom Peungvicha, Department of Physiology, Faculty of Pharmacy, Mahidol University, 447 Thanon Si Ayutthaya, Thung Phaya Thai, Ratchathewi 10400, Bangkok, Thailand




Agarwal, M., Rai, V., Khatoon, S., & Mehrotra, S. (2014). Effect of microbial load on therapeutically active constituent glycyrrhizin of Glycyrrhiza glabra L. Indian Journal of Traditional Knowledge, 13(2), 319–324.
AHPA. (2017). Guidance on Limits of Foreign Matter in Herbal Ingredients (pp. 1–5). American Herbal Products Association.
Alamgir, A. N. M. (2017). Herbal drugs: Their collection, preservation, and preparation; evaluation, quality control, and standardization of herbal drugs. In K. D. Rainsford (Ed.), Therapeutic Use of Medicinal Plants and Their Extracts: Volume 1 (Vol. 73, pp. 453–495). Springer International Publishing.
Bandeira, S. de M., Da-Fonseca, L. J. S., Guedes, G. da S., Rabelo, L. A., Goulart, M. O. F., & Vasconcelos, S. M. L. (2013). Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. International Journal of Molecular Sciences, 14, 3265–3284.
Casagrande, M., Zanela, J., Júnior, A. W., Busso, C., Wouk, J., Iurckevicz, G., Montanher, P. F., Yamashita, F., & Malfatti, C. R. M. (2018). Influence of time, temperature and solvent on the extraction of bioactive compounds of Baccharis dracunculifolia: In vitro antioxidant activity, antimicrobial potential, and phenolic compound quantification. Industrial Crops and Products, 125, 207–219.
Cecchini, S., Paciolla, M., Caputo, A. R., & Bavoso, A. (2014). Antioxidant potential of the polyherbal formulation "ImmuPlus": A nutritional supplement for horses. Veterinary Medicine International, 2014, article ID 434239.
Celep, E., Seven, M., Akyüza, S., İnan, Y., & Yesilada, E. (2019). Influence of extraction method on enzyme inhibition, phenolic profile and antioxidant capacity of Sideritis trojana Bornm. South African Journal of Botany, 121, 360–365.
Chassagne, F., Haddad, M., Amiel, A., Phakeovilay, C., Manithip, C., Bourdy, G., Deharo, E., & Marti, G. (2018). A metabolomic approach to identify anti-hepatocarcinogenic compounds from plants used traditionally in the treatment of liver diseases. Fitoterapia, 127, 226–236.
Chawla, R., Madhu, S. V., Makkar, B. M., Ghosh, S., Saboo, B., & Kalra, S. (2020). RSSDI-ESI clinical practice recommendations for the management of type 2 diabetes mellitus 2020. Indian Journal of Endocrinology and Metabolism, 24(1), 1–122.
Chewchinda, S., Lomarat, P., & Sithisarn, P. (2018). Validated thin-layer chromatography - densitometric method for simultaneous determination of piperine and plumbagin in "Benjakul" Thai polyherbal formulation and its antioxidant activities. Thai Journal of Pharmaceutical Sciences, 42(1), 45–50.
Craft, B. D., Kerrihard, A. L., Amarowicz, R., & Pegg, R. B. (2012). Phenol‐based antioxidants and the in vitro methods used for their assessment. Comprehensive Reviews in Food Science and Food Safety, 11(2), 148–173.
Das, C., Bose, A., Mallick, S., & Das, D. (2019). Development of standardization parameters of crude drugs used in Ayurvedic Balarista formulation. Oriental Pharmacy and Experimental Medicine, 19, 455–467.
Daud, M. N. H., Wibowo, A., Abdullah, N., & Ahmad, R. (2018). Bioassay-guided fractionation of Artocarpus heterophyllus L. J33 variety fruit waste extract and identification of its antioxidant constituents by TOF-LCMS. Food Chemistry, 266, 200–214.
Dharmaratne, M. P. J., Manoraj, A., Thevanesam, V., Ekanayake, A., Kumar, N. S., Liyanapathirana, V., Abeyratne, E., & Bandara, B. M. R. (2018). Terminalia bellirica fruit extracts: In-vitro antibacterial activity against selected multidrug-resistant bacteria, radical scavenging activity and cytotoxicity study on BHK-21 cells. BMC Complementary and Alternative Medicine, 18(1), article ID 325.
Ervina, M., Lie, H. S., Diva, J., Caroline, Tewfik, S., & Tewfik, I. (2019). Optimization of water extract of Cinnamomum burmannii bark to ascertain its in vitro antidiabetic and antioxidant activities. Biocatalysis and Agricultural Biotechnology, 19, article ID 101152.
Frond, A. D., Iuhas, C. I., Stirbu, I., Leopold, L., Socaci, S., Andreea, S., Ayvaz, H., Andreea, S., Mihai, S., Diaconeasa, Z., & Carmen, S. (2019). Phytochemical characterization of five edible purple-reddish vegetables: Anthocyanins, flavonoids, and phenolic acid derivatives. Molecules, 24(8), article ID 1536.
Gerber, P. A., & Rutter, G. A. (2017). The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxidant and Redox Signaling, 26(10), 501–518.
Habibie, H., Heryanto, R., Rafi, M., & Darusman, L. K. (2017). Development of quality control method for glucofarmaka antidiabetic jamu by HPLC fingerprint analysis. Indonesian Journal of Chemistry, 17(1), 79–85.
Hartanti, L., Yonas, S. M. K., Mustamu, J. J., Wijaya, S., Setiawan, H. K., & Soegianto, L. (2019). Influence of extraction methods of bay leaves (Syzygium polyanthum) on antioxidant and HMG-CoA Reductase inhibitory activity. Heliyon, 5(4), article ID e01485.
Houghton, P. (2009). Synergy and polyvalence: Paradigms to explain the activity of herbal products. In P. K. Mukherjee & P. J. Houghton (Eds.), Evaluation of herbal medicinal products: Perspectives on quality, safety and efficacy (1st ed., pp. 85–94). Pharmaceutical Press.
Indonesian MoH. (2017). Farmakope Herbal Indonesia 2017 (2nd ed.). Ministry of Health Republic of Indonesia.
Indonesian MoH. (2018). Riset Kesehatan Dasar (Basic Health Research).
Ismail, A., Rahim, E. N. A. A., Omar, M. N., & Ahmad, W. A. N. W. (2020). Antihypertensive assay-guided fractionation of Syzygium polyanthum leaves and phenolics profile analysis using LCQTOF/MS. Pharmacognosy Journal, 12(6), 1670–1692.
Ismail, H. F., Hashim, Z., Soon, W. T., Rahman, N. S. A., Zainudin, A. N., & Majid, F. A. A. (2017). Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. Journal of Traditional and Complementary Medicine, 7(4), 452–465.
Júnior, R. F. de A., Souza, T. P. de, Pires, J. G. L., Soares, L. A. L., Araújo, A. A. de, Petrovick, P. R., Mâcedo, H. D. O., Oliveir, A. L. C. de S. L., & Guerra, G. C. B. (2012). A dry extract of Phyllanthus niruri protects normal cells and induces apoptosis in human liver carcinoma cells. Experimental Biology and Medicine, 237(11), 1281–1288.
Ligita, T., Wicking, K., Francis, K., Harvey, N., & Nurjannah, I. (2019). How people living with diabetes in Indonesia learn about their disease: A grounded theory study. PLOS ONE, 14(2), e0212019.
Lin, N.-H., Yang, H.-W., Su, Y.-J., & Chang, C.-W. (2019). Herb induced liver injury after using herbal medicine: A systemic review and case-control study. Medicine (Baltimore), 98(13), article ID e14992.
Mukhi, S., Bose, A., Panda, P., & Rao, M. M. (2016). Pharmacognostic, physicochemical and chromatographic characterization of Samasharkara Churna. Journal of Ayurveda and Integrative Medicine, 7, 88–99.
Navarro, M., Moreira, I., Arnaez, E., Quesada, S., Azofeifa, G., Alvarado, D., & Monagas, M. J. (2017). Proanthocyanidin characterization, antioxidant and cytotoxic activities of three plants commonly used in traditional medicine in Costa Rica: Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd. Plants (Basel), 6(4), article ID 50.
Patonay, K., Szalontai, H., Csugány, J., Szabó-Hudák, O., Kónya, E. P., & Németh, É. Z. (2019). Comparison of extraction methods for the assessment of total polyphenol content and in vitro antioxidant capacity of horsemint (Mentha longifolia (L.) L.). Journal of Applied Research on Medicinal and Aromatic Plants, 15, article ID 100220.
Pisoschi, A. M., Pop, A., Cimpeanu, C., & Predoi, G. (2016). Antioxidant capacity determination in plants and plant-derived products: A review. Oxidative Medicine and Cellular Longevity, 2016, article ID 9130976.
Rahayu, E. O., Lestari, T., & Sayuti, N. A. (2016). Influence of antidiabetic herbal medicine to a decrease blood glucose levels of Diabetes Mellitus patients at the 'Hortus Medicus' Scientification of Jamu Clinic Tawangmangu, Karanganyar. Indonesian Journal of Clinical Pharmacy, 5(1), 19–25.
Santos-Sánchez, N. F., Salas-Coronado, R., Villanueva-Cañongo, C., & Hernández-Carlos, B. (2019). Antioxidant compounds and their antioxidant mechanism. In E. Shalaby (Ed.), Antioxidant (pp. 1–28). IntechOpen.
Sepahpour, S., Selamat, J., Manap, M. Y. A., Khatib, A., & Razis, A. F. A. (2018). Comparative analysis of chemical composition, antioxidant activity and quantitative characterization of some phenolic compounds in selected herbs and spices in different solvent extraction systems. Molecules, 23(2), article ID 402.
Siddiqui, S., Ahmad, R., Khan, M. A., Upadhyay, S., Husain, I., & Srivastava, A. N. (2019). Cytostatic and Anti-tumor potential of ajwa date pulp against human hepatocellular carcinoma HepG2 cells. Scientific Reports, 9, article ID 245.
Tanvir, E. M., Hossen, M. S., Hossain, M. F., Afroz, R., Gan, S. H., Khalil, M. I., & Karim, N. (2017). Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. Journal of Food Quality, 2017, article ID 8471785.
Tauheed, A., Hamiduddin, Khanam, S., Ali, M. A., & Zaigham, M. (2017). Comparative physicochemical evaluation of kharekhasak (Tribulus terrestris Linn.) before and after mudabbar process. Pharmacognosy Research, 9(4), 384–389.
Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675.
Tuekaew, J., Siriwatanametanon, N., Wongkrajang, Y., Temsiririrkkul, R., & Jantan, I. (2014). Evaluation of the antioxidant activities of ya-hom intajak, a Thai herbal formulation, and its component plants. Tropical Journal of Pharmaceutical Research, 13(9), 1477–1485.
Van-den-Hof, W. F. P. M., Coonen, M. L. J., Van-Herwijnen, M., Brauers, K., Wodzig, W. K. W. H., Van-Delft, J. H. M., & Kleinjans, J. C. S. (2014). Classification of hepatotoxicants using HepG2 cells: A proof of principle study. Chemical Research in Toxicology, 27(3), 433–442.
Wakkumbura, H. P., Wickramaarachchi, W. M. D., Arawwawala, L. D. A. M., Liyanage, J. A., & Rajapakse, R. P. V. J. (2020). Assessment of the quality and evaluation of the antioxidant potential of a novel Sri Lankan ayurvedic polyherbal formulation. Evidence-Based Complementary and Alternative Medicine, 2020, article ID 2319315.
Wetchakul, P., Goon, J. A., Adekoya, A. E., Olatunji, O. J., Ruangchuay, S., Jaisamut, P., Issuriya, A., Kunworarath, N., Limsuwan, S., & Chusri, S. (2019). Traditional tonifying polyherbal infusion, Jatu-Phala-Tiga, exerts antioxidant activities and extends lifespan of Caenorhabditis elegans. BMC Complementary and Alternative Medicine, 19(1), 209.
Wijayanti, E., Fitriani, U., & Nisa, U. (2016). Intervensi gizi dan ramuan jamu untuk diabetes terhadap kadar gula darah di RRJ Hortus Medicus (The effects of nutritional intervention and jamu for diabetes on blood sugar levels of patients with diabetes at RRJ Hortus Medicus). Journal of Tropical Pharmacy and Chemistry, 3(4), 299–306.
Wijewardhana, U. S., Gunathilaka, U. G. S. A., & Navaratne, S. B. (2019). Determination of total phenolic content, radical scavenging activity and total antioxidant capacity of cinnamon bark, black cumin seeds and garlic. International Research Journal of Advanced Engineering and Science, 4(4), 55–57.
Yahaya, W. A. W., Yazid, N. A., Azman, N. A. M., & Almajano, M. P. (2019). Antioxidant activities and total phenolic content of Malaysian herbs as components of active packaging film in beef patties. Antioxidant, 8(7), 204.
Yang, Q.-Q., Cheng, L.-Z., Zhang, T., Yaron, S., Jiang, H.-X., Sui, Z.-Q., & Cork, H. (2020). Phenolic profiles, antioxidant, and antiproliferative activities of turmeric (Curcuma longa). Industrial Crops and Products, 152, article ID 112561.
Zainal, W. N. H. W., Musahib, F. R., & Zulkeflee, N. S. (2019). Comparison of total phenolic contents and antioxidant activities of Centella asiatica extracts obtained by three extraction techniques. International Journal of Engineering Technology and Sciences, 6(2), 42–49.
How to Cite
Hartanti, D., Chatsumpun, N., Sa-ngiamsuntorn, K., Supharattanasitthi, W., Kitphati, W., & Peungvicha, P. (2022). The Pharmacognostic Standards, Antioxidant and Antidiabetic Activities, and Hepatic Safety Profile of An Indonesian Antidiabetic Polyherbal Formulation. Indonesian Journal of Pharmacy, 34(1).
Research Article