Exploring the Potency of Jatropha Seed Meal (Jatropha curcas) as a Chemoprevention Agent through Metastatic Inhibition

  • Ana Fiin Nangimi Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • Ahmad Syauqy Tafrihani Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • Midori Rahmadhany Putri Adisusilo Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • Riris Istighfari Jenie 1.) Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia 2.) Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
Keywords: isoamericanol A, daidzein, myricetin, phorbol ester, bioinformatics, MMP-9

Abstract

Jatropha (Jatropha curcas) is often used as biodiesel because of the oil content in its seeds. The production of jatropha oil generates a byproduct in the form of jatropha seed meal, which contains compounds with cytotoxic activity and phorbol esters, as co-carcinogens and tumor promoters. Meanwhile, metastasis is one of the characteristics of cancer where the cells spread to another tissue. This study aimed to determine the potential of jatropha seed meal as a chemoprevention agent, particularly an antimetastatic one, under bioinformatic study and molecular docking. Genecards and DAVID were performed to explore the protein involved in the metastatic process and its gene ontology. The prediction target protein was caught by SwissTargetPrediction. Jatropha seed meal showed the presence of isoamericanol A, myricetin, daidzein, gallic acid, and rutin. There are 11 prediction target proteins correlated to metastatic in extracellular matrix components. Then we were docked to a protein involved in metastasis, matrix metalloproteinase (MMP)-9 (PDB ID: 6ESM) using MOE software. The docking score determined the interaction properties. The docking analysis revealed that isoamericanol A, daidzein, and myricetin exhibited better binding affinity than native ligands and other compounds. Moreover, based on our literature study, the jatropha seed meal contains isoamericanol A, rutin, myricetin, daidzein, and gallic acid, which present anticancer properties by inhibition of cell invasion and migration, cell cycle arrest induction, and suppression of the MMP-9 activity. Overall, jatropha seed meal has potential as an antimetastatic agent. A comprehensive study is needed to explore the possibility of developing it as a supportive agent in combination with a chemotherapeutic agent.

References

Abdelgadir, H. A., & Van Staden, J. (2013). Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): A review. South African Journal of Botany, 88, 204–218. https://doi.org/10.1016/j.sajb.2013.07.021
Abou-Arab, A. A., Mahmoud, M. H., Ahmed, D. M. M., & Abu-Salem, F. M. (2019). Comparative study between chemical, physical and enzymatic methods for Jatropha curcas kernel meal phorbol ester detoxification. Heliyon, 5(5), e01689. https://doi.org/10.1016/j.heliyon.2019.e01689
Asuk, A. A., Agiang, M. A., Dasofunjo, K., & Willie, A. J. (2015). The biomedical significance of the phytochemical, proximate and mineral compositions of the leaf, stem bark and root of Jatropha curcas. Asian Pacific Journal of Tropical Biomedicine, 5(8), 650–657. https://doi.org/10.1016/j.apjtb.2015.05.015
Chen, H., Miao, Q., Geng, M., Liu, J., Hu, Y., Tian, L., Pan, J., & Yang, Y. (2013). Anti-Tumor Effect of Rutin on Human Neuroblastoma Cell Lines through Inducing G2/M Cell Cycle Arrest and Promoting Apoptosis. The Scientific World Journal, 2013, 1–8. https://doi.org/10.1155/2013/269165
Chen, Y.-J., Lin, K.-N., Jhang, L.-M., Huang, C.-H., Lee, Y.-C., & Chang, L.-S. (2016). Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells. Chemico-Biological Interactions, 252, 131–140. https://doi.org/10.1016/j.cbi.2016.04.025
Ci, Y., Zhang, Y., Liu, Y., Lu, S., Cao, J., Li, H., Zhang, J., Huang, Z., Zhu, X., Gao, J., & Han, M. (2018). Myricetin suppresses breast cancer metastasis through down-regulating the activity of matrix metalloproteinase (MMP)-2/9. Phytotherapy Research, 32(7), 1373–1381. https://doi.org/10.1002/ptr.6071
Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
Eble, J. A., & Niland, S. (2019). The extracellular matrix in tumor progression and metastasis. Clinical & Experimental Metastasis, 36(3), 171–198. https://doi.org/10.1007/s10585-019-09966-1
Fujiki, H., Suttajit, M., Rawangkan, A., Iida, K., Limtrakul, P., Umsumarng, S., & Suganuma, M. (2017). Phorbol esters in seed oil of Jatropha curcas L. (saboodam in Thai) and their association with cancer prevention: From the initial investigation to the present topics. Journal of Cancer Research and Clinical Oncology, 143(8), 1359–1369. https://doi.org/10.1007/s00432-017-2341-6
Gogoi, R., Niyogi, U. K., & Tyagi, A. K. (2014). Reduction of phorbol ester content in jatropha cake using high energy gamma radiation. Journal of Radiation Research and Applied Sciences, 7(3), 305–309. https://doi.org/10.1016/j.jrras.2014.04.002
Gullapalli, R. P., & Mazzitelli, C. L. (2017). Gelatin and Non-Gelatin Capsule Dosage Forms. Journal of Pharmaceutical Sciences, 106(6), 1453–1465. https://doi.org/10.1016/j.xphs.2017.02.006
Hermawan, A., Putri, H., Hanif, N., & Ikawati, M. (2020). Integrative Bioinformatics Study Reveals Tangeretin Targets and Molecular Mechanisms Against Metastatic Breast Cancer [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-55381/v1
Ho, H.-H., Chang, C.-S., Ho, W.-C., Liao, S.-Y., Wu, C.-H., & Wang, C.-J. (2010). Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-κB activity and downregulation of PI3K/AKT/small GTPase signals. Food and Chemical Toxicology, 48(8–9), 2508–2516. https://doi.org/10.1016/j.fct.2010.06.024
Hoag, S. W. (2017). Capsules Dosage Form. In Developing Solid Oral Dosage Forms (pp. 723–747). Elsevier. https://doi.org/10.1016/B978-0-12-802447-8.00027-3
Huang, H. (2018). Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent Advances. Sensors, 18(10), 3249. https://doi.org/10.3390/s18103249
Huang, S.-L., Wang, W.-H., Zhong, X.-Y., Lin, C.-T., Lin, W.-S., Chang, M.-Y., & Lin, Y.-S. (2020). Antioxidant Properties of Jatropha curcas L. Seed Shell and Kernel Extracts. Applied Sciences, 10(9), 3279. https://doi.org/10.3390/app10093279
Jaramillo-Quintero, L. P., Contis Montes de Oca, A., Romero Rojas, A., Rojas-Hernández, S., Campos-Rodríguez, R., & Martínez-Ayala, A. L. (2015). Cytotoxic effect of the immunotoxin constructed of the ribosome-inactivating protein curcin and the monoclonal antibody against Her2 receptor on tumor cells. Bioscience, Biotechnology, and Biochemistry, 79(6), 896–906. https://doi.org/10.1080/09168451.2015.1006572
Jiang, M., Zhu, M., Wang, L., & Yu, S. (2019). Anti-tumor effects and associated molecular mechanisms of myricetin. Biomedicine & Pharmacotherapy, 120, 109506. https://doi.org/10.1016/j.biopha.2019.109506
Katagi, A., Sui, L., Kamitori, K., Suzuki, T., Katayama, T., Hossain, A., Noguchi, C., Dong, Y., Yamaguchi, F., & Tokuda, M. (2016a). Inhibitory effect of isoamericanol A from Jatropha curcas seeds on the growth of MCF-7 human breast cancer cell line by G2/M cell cycle arrest. Heliyon, 2(1), e00055. https://doi.org/10.1016/j.heliyon.2015.e00055
Katagi, A., Sui, L., Kamitori, K., Suzuki, T., Katayama, T., Hossain, A., Noguchi, C., Dong, Y., Yamaguchi, F., & Tokuda, M. (2016b). Inhibitory effect of isoamericanol A from Jatropha curcas seeds on the growth of MCF-7 human breast cancer cell line by G2/M cell cycle arrest. Heliyon, 2(1), e00055. https://doi.org/10.1016/j.heliyon.2015.e00055
Katagi, A., Sui, L., Kamitori, K., Suzuki, T., Katayama, T., Hossain, A., Noguchi, C., Dong, Y., Yamaguchi, F., & Tokuda, M. (2017). High Anticancer Properties of Defatted Jatropha Curcus Seed Residue and its Active Compound, Isoamericanol A. Natural Product Communications, 12(12), 1934578X1701201. https://doi.org/10.1177/1934578X1701201217
Leiva, B., Carrasco, I., Montenegro, I., Gaete, L., Lemus, I., Tchernitchin, A., Bustamante, R., Párraga, M., & Villena, J. (2015). Equol and daidzein decrease migration, invasion and matrix metalloproteinase (MMPs) gene expression in prostate cancer cell lines, DU-145 and PC-3. 13.
Li, C.-Y., Devappa, R. K., Liu, J.-X., Lv, J.-M., Makkar, H. P. S., & Becker, K. (2010). Toxicity of Jatropha curcas phorbol esters in mice. Food and Chemical Toxicology, 48(2), 620–625. https://doi.org/10.1016/j.fct.2009.11.042
Liang, M., Teo, S. Y., Gudi, M., Lim, S. H., & Win, T. (2019). Breast Microcalcifications as the Only Imaging Manifestation of Metastatic Serous Peritoneal Adenocarcinoma in the Breast. Journal of Radiology Case Reports, 13(10), 11–20. https://doi.org/10.3941/jrcr.v13i10.3769
Liao, C.-L., Lai, K.-C., Huang, A.-C., Yang, J.-S., Lin, J.-J., Wu, S.-H., Gibson Wood, W., Lin, J.-G., & Chung, J.-G. (2012). Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food and Chemical Toxicology, 50(5), 1734–1740. https://doi.org/10.1016/j.fct.2012.02.033
Marrufo-Estrada, D. M., Segura-Campos, M. R., Chel-Guerrero, L. A., & Betancur-Ancona, D. A. (2013). Defatted Jatropha curcas flour and protein isolate as materials for protein hydrolysates with biological activity. Food Chemistry, 138(1), 77–83. https://doi.org/10.1016/j.foodchem.2012.09.033
Montes, J. M., & Melchinger, A. E. (2016). Domestication and Breeding of Jatropha curcas L. Trends in Plant Science, 21(12), 1045–1057. https://doi.org/10.1016/j.tplants.2016.08.008
Muangman, S., Thippornwong, M., & Tohtong, R. (2005). Anti-metastatic Effects of Curcusone B, a Diterpene from Jatropha curcas. In Vivo, 4.
Oskoueian, E., Abdullah, N., Ahmad, S., Saad, W. Z., Omar, A. R., & Ho, Y. W. (2011). Bioactive Compounds and Biological Activities of Jatropha curcas L. Kernel Meal Extract. International Journal of Molecular Sciences, 12(9), 5955–5970. https://doi.org/10.3390/ijms12095955
Pandey, V. C., Singh, K., Singh, J. S., Kumar, A., Singh, B., & Singh, R. P. (2012). Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renewable and Sustainable Energy Reviews, 16(5), 2870–2883. https://doi.org/10.1016/j.rser.2012.02.004
Paolillo & Schinelli. (2019). Extracellular Matrix Alterations in Metastatic Processes. International Journal of Molecular Sciences, 20(19), 4947. https://doi.org/10.3390/ijms20194947
Robinson, D. R., Wu, Y.-M., Lonigro, R. J., Vats, P., Cobain, E., Everett, J., Cao, X., Rabban, E., Kumar-Sinha, C., Raymond, V., Schuetze, S., Alva, A., Siddiqui, J., Chugh, R., Worden, F., Zalupski, M. M., Innis, J., Mody, R. J., Tomlins, S. A., … Chinnaiyan, A. M. (2017). Integrative clinical genomics of metastatic cancer. Nature, 548(7667), 297–303. https://doi.org/10.1038/nature23306
Sharma, A. K., Gangwar, M., Tilak, R., Nath, G., Sinha, A. S. K., Tripathi, Y. B., & Kumar, D. (2012). Comparative in vitro Antimicrobial and Phytochemical Evaluation of Methanolic Extract of Root, Stem and Leaf of Jatropha curcas Linn. Pharmacognosy Journal, 4(30), 34–40. https://doi.org/10.5530/pj.2012.30.7
Shih, Y.-W., Wu, P.-F., Lee, Y.-C., Shi, M.-D., & Chiang, T.-A. (2009). Myricetin Suppresses Invasion and Migration of Human Lung Adenocarcinoma A549 Cells: Possible Mediation by Blocking the ERK Signaling Pathway. Journal of Agricultural and Food Chemistry, 57(9), 3490–3499. https://doi.org/10.1021/jf900124r
Sun, F., Zheng, X. Y., Ye, J., Wu, T. T., Wang, J. li, & Chen, W. (2012). Potential Anticancer Activity of Myricetin in Human T24 Bladder Cancer Cells Both In Vitro and In Vivo. Nutrition and Cancer, 64(4), 599–606. https://doi.org/10.1080/01635581.2012.665564
Webb, A. H., Gao, B. T., Goldsmith, Z. K., Irvine, A. S., Saleh, N., Lee, R. P., Lendermon, J. B., Bheemreddy, R., Zhang, Q., Brennan, R. C., Johnson, D., Steinle, J. J., Wilson, M. W., & Morales-Tirado, V. M. (2017). Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer, 17(1), 434. https://doi.org/10.1186/s12885-017-3418-y
Yao, L., Han, C., Chen, G., Song, X., Chang, Y., & Zang, W. (2012). A new asymmetric diamide from the seed cake of Jatropha curcas L. Fitoterapia, 83(8), 1318–1321. https://doi.org/10.1016/j.fitote.2012.04.001
Published
2022-06-23
How to Cite
Nangimi, A. F., Tafrihani, A. S., Adisusilo, M. R. P., & Jenie, R. I. (2022). Exploring the Potency of Jatropha Seed Meal (Jatropha curcas) as a Chemoprevention Agent through Metastatic Inhibition . Indonesian Journal of Pharmacy, 33(3), 434-447. https://doi.org/10.22146/ijp.3876
Section
Research Article