Molecular Docking and ADMET Prediction Studies of Flavonoids as Multi-target Agents in COVID-19 Therapy: Anti-inflammatory and Antiviral Approaches

  • Arief Adi Nugroho Undergraduate Program of Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
  • Muhammad Sulhan Hadi Undergraduate Program of Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
  • Candra Adianto Undergraduate Program of Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
  • Juniawan Akbar Kharisma Putra Undergraduate Program of Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
  • Hari Purnomo Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
  • Nanang Fakhrudin Fakultas Farmasi, UGM
Keywords: SARS-COV-2; herbaal medicine; anti-virus; anti-inflammation; in silico.

Abstract

Recent studies showed that hyper-inflammatory reactions including cytokines storm leads to acute respiratory distress syndrome and responsible for death toll in COVID-19. Thus, the pathways involved in inflammation and SARS-Cov-2 replication represent a promising therapeutic target. By employing a computational model, we investigated the effect of plant flavonoids on pro-inflammatory proteins (glucocorticoid receptor (GR), cyclooxygenase-2 (COX-2) and 5-lipoxygenase (LOX) enzymes), and on proteins involved in virus replication (main protease (Mpro), and papain-like protease (PLpro)). This in silico study study aimed to identify promising flavonoids with anti-inflammatory and antiviral activities (multi-target) for combating COVID-19. Mpro (PDBID: 6LU7), PLpro (PDBID: 6WX4), COX-2 (PDBID: 6COX), LOX (PDBID: 6N2W), and GR (PDBID: 1P93) were selected as target proteins. The molecular docking experiment was done using PLANTS software. Parameters for Lipinski’s “Rule-of-Five'', and the prediction of pharmacokinetic and toxicity profiles were done using the online platform, pkCSM. We found that 2 flavonoids, diosmin and hesperidin demonstrated low binding score and stronger than that of the reference ligands for the target proteins of Mpro, PLpro, and LOX. These compounds interact with amino acid residues of the protein targets through hydrogen bonds and show similar binding pattern compared to the approved drugs and native ligands. The ADMET and drug-likeness profiles prediction indicated that they have low toxicity, and good pharmacokinetic properties with the exception of the absorption profile. Hesperidin and diosmin are the promising candidates to be further investigated as multi-target agent for the treatment of COVID-19 through simultaneous inhibition of inflammation and virus replication.

References

Adem, S., Eyupoglu, V., Sarfraz, I., Rasul, A., & Ali, M. (2020). Identification of Potent COVID-19 Main Protease (Mpro) Inhibitors from Natural Polyphenols: An in Silico Strategy Unveils a Hope against CORONA. 2020. https://doi.org/10.20944/preprints202003.0333.v1
Alunno, A., Carubbi, F., & Rodríguez-Carrio, J. (2020). Storm, typhoon, cyclone or hurricane in patients with COVID-19? Beware of the same storm that has a different origin. RMD Open, 6(1), 1–4. https://doi.org/10.1136/rmdopen-2020-001295
Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). ( 3CL pro ) Structure : Basis for Design of Anti-SARS Drugs. Science, 300(June), 1763–1767.
Becker, N. M., & Cooper, M. M. (2014). College chemistry students’ understanding of potential energy in the context of atomic-molecular interactions. Journal of Research in Science Teaching, 51(6), 789–808. https://doi.org/10.1002/tea.21159
Bellavite, P., & Donzelli, A. (2020). Hesperidin and SARS-CoV-2: New light on the healthy function of citrus fruits. Antioxidants, 9(8), 1–18. https://doi.org/10.3390/antiox9080742
Bello, M., Martínez-Muñoz, A., & Balbuena-Rebolledo, I. (2020). Identification of saquinavir as a potent inhibitor of dimeric SARS-CoV2 main protease through MM/GBSA. Journal of Molecular Modeling, 26(12). https://doi.org/10.1007/s00894-020-04600-4
Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007
Boisnic, S., Branchet, M. C., Gouhier-Kodas, C., Verriere, F., & Jabbour, V. (2018). Anti-inflammatory and antiradical effects of a 2% diosmin cream in a human skin organ culture as model. Journal of Cosmetic Dermatology, 17(5), 848–854. https://doi.org/10.1111/jocd.12778
Brogi, S., Ramalho, T. C., Kuca, K., Medina-Franco, J. L., & Valko, M. (2020). Editorial: In silico Methods for Drug Design and Discovery. In Frontiers in Chemistry (Vol. 8). https://doi.org/10.3389/fchem.2020.00612
Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C., & Di Napoli, R. (2020). Features, Evaluation and Treatment Coronavirus (COVID-19). StatPearls.
Chen, Y. W., Yiu, C. P. B., & Wong, K. Y. (2020). Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research, 9, 1–19. https://doi.org/10.12688/f1000research.22457.2
Coperchini, F., Chiovato, L., Croce, L., Magri, F., & Rotondi, M. (2020). The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine and Growth Factor Reviews, 53(May), 25–32. https://doi.org/10.1016/j.cytogfr.2020.05.003
Crespo, M. E., Gálvez, J., Cruz, T., Ocete, M. A., & Zarzuelo, A. (1999). Anti-inflammatory activity of diosmin and hesperidin in rat colitis induced by TNBS. Planta Medica, 65(7), 651–653. https://doi.org/10.1055/s-2006-960838
Das, S., Sarmah, S., Lyndem, S., & Singha Roy, A. (2021). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure and Dynamics, 39(9), 3347–3357. https://doi.org/10.1080/07391102.2020.1763201
Emim, J. A. D. S., Oliveira, A. B., & Lapa, A. J. (1994). Pharmacological Evaluation of the Anti‐inflammatory Activity of a Citrus Bioflavonoid, Hesperidin, and the Isoflavonoids, Duartin and Claussequinone, in Rats and Mice. Journal of Pharmacy and Pharmacology, 46(2), 118–122. https://doi.org/10.1111/j.2042-7158.1994.tb03753.x
England, J. T., Abdulla, A., Biggs, C. M., Lee, A. Y. Y., Hay, K. A., Hoiland, R. L., Wellington, C. L., Sekhon, M., Jamal, S., Shojania, K., & Chen, L. Y. C. (2021). Weathering the COVID-19 storm: Lessons from hematologic cytokine syndromes. Blood Reviews, 45(May 2020), 100707. https://doi.org/10.1016/j.blre.2020.100707
Feldo, M., Woźniak, M., Wójciak-Kosior, M., Sowa, I., Kot-Waśik, A., Aszyk, J., Bogucki, J., Zubilewicz, T., & Bogucka-Kocka, A. (2018). Influence of diosmin treatment on the level of oxidative stress markers in patients with chronic venous insufficiency. Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/2561705
Fu, Z., Chen, Z., Xie, Q., Lei, H., & Xiang, S. (2018). Hesperidin protects against IL-1β-induced inflammation in human osteoarthritis chondrocytes. Experimental and Therapeutic Medicine, 16(4), 3721–3727. https://doi.org/10.3892/etm.2018.6616
Fujimoto, I., Pan, J., Takizawa, T., & Nakanishi, Y. (2000). Virus Clearance through Apoptosis-Dependent Phagocytosis of Influenza A Virus-Infected Cells by Macrophages. Journal of Virology, 74(7), 3399–3403. https://doi.org/10.1128/jvi.74.7.3399-3403.2000
Funk, C. D., & Ardakani, A. (2020). A Novel Strategy to Mitigate the Hyperinflammatory Response to COVID-19 by Targeting Leukotrienes. Frontiers in Pharmacology, 11(August), 1–8. https://doi.org/10.3389/fphar.2020.01214
Garner, R. C., Garner, J. V., Gregory, S., Whattam, M., Calam, A., & Leong, D. (2002). Comparison of the absorption of micronized (daflon 500® mg) and nonmicronized 14C-diosmin tablets after oral administration to healthy volunteers by accelerator mass spectrometry and liquid scintillation counting. Journal of Pharmaceutical Sciences, 91(1), 32–40. https://doi.org/10.1002/jps.1168
Gil, C., Ginex, T., Maestro, I., Nozal, V., Barrado-Gil, L., Cuesta-Geijo, M. Á., Urquiza, J., Ramírez, D., Alonso, C., Campillo, N. E., & Martinez, A. (2020). COVID-19: Drug Targets and Potential Treatments. Journal of Medicinal Chemistry, 63(21), 12359–12386. https://doi.org/10.1021/acs.jmedchem.0c00606
Gilbert, N. C., Gerstmeier, J., Schexnaydre, E. E., Börner, F., Garscha, U., Neau, D. B., Werz, O., & Newcomer, M. E. (2020). Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nature Chemical Biology, 16(7), 783–790. https://doi.org/10.1038/s41589-020-0544-7
Giménez, B. G., Santos, M. S., Ferrarini, M., & Dos Santos Fernandes, J. P. (2010). Evaluation of blockbuster drugs under the rule-of-five. Pharmazie, 65(2), 148–152. https://doi.org/10.1691/ph.2010.9733
Gimeno, G., Carpentier, P. H., & Finet, M. (1996). In vivo anti-inflammatory effects of diosmin - comparison with some arachidonic acid cascade inhibitors. Fundamental and Clinical Pharmacology, 10(1), 78.
Haggag, Y. A., El-Ashmawy, N. E., & Okasha, K. M. (2020). Is hesperidin essential for prophylaxis and treatment of COVID-19 Infection?. Medical Hypotheses, 144, 109957.
Hegyi, A., & Ziebuhr, J. (2002). Conservation of substrate specificities among coronavirus main proteases. Journal of General Virology, 83(3), 595–599. https://doi.org/10.1099/0022-1317-83-3-595
Homayouni, F., Haidari, F., Hedayati, M., Zakerkish, M., & Ahmadi, K. (2018). Blood pressure lowering and anti-inflammatory effects of hesperidin in type 2 diabetes; a randomized double-blind controlled clinical trial. Phytotherapy Research, 32(6), 1073–1079. https://doi.org/10.1002/ptr.6046
Hoxha, M. (2020). What about COVID-19 and arachidonic acid pathway? European Journal of Clinical Pharmacology, 76(11), 1501–1504. https://doi.org/10.1007/s00228-020-02941-w
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
Imam, F., Al-Harbi, N. O., Al-Harbi, M. M., Ansari, M. A., Zoheir, K. M. A., Iqbal, M., Anwer, M. K., Al Hoshani, A. R., Attia, S. M., & Ahmad, S. F. (2015). Diosmin downregulates the expression of T cell receptors, pro-inflammatory cytokines and NF-κB activation against LPS-induced acute lung injury in mice. Pharmacological Research, 102, 1–11. https://doi.org/10.1016/j.phrs.2015.09.001
Islam, J., Shree, A., Afzal, S. M., Vafa, A., & Sultana, S. (2020). Protective effect of Diosmin against benzo(a)pyrene-induced lung injury in Swiss Albino Mice. Environmental Toxicology, 35(7), 747–757. https://doi.org/10.1002/tox.22909
Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
Joshi, R. S., Jagdale, S. S., Bansode, S. B., Shankar, S. S., Tellis, M. B., Pandya, V. K., Chugh, A., Giri, A. P., & Kulkarni, M. J. (2020). Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. Journal of Biomolecular Structure and Dynamics, 39(9), 1–16. https://doi.org/10.1080/07391102.2020.1760137
Kellenberger, E., Foata, N., & Rognan, D. (2008). Ranking targets in structure-based virtual screening of three-dimensional protein libraries: Methods and problems. Journal of Chemical Information and Modeling, 48(5), 1014–1025. https://doi.org/10.1021/ci800023x
Kumar, A., Majumdar, S., Singh, R., & Misra, A. (2020). Role of corticosteroid in the management of COVID-19: A systemic review and a Clinician’s perspective. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(5), 971-978.
Kumar, S., Bhargava, D., Thakkar, A., & Arora, S. (2013). Drug carrier systems for solubility enhancement of BCS class II drugs: A critical review. Critical Reviews in Therapeutic Drug Carrier Systems, 30(3), 217–256. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2013005964
Lago, J. H. G., Toledo-Arruda, A. C., Mernak, M., Barrosa, K. H., Martins, M. A., Tibério, I. F. L. C., & Prado, C. M. (2014). Structure-Activity association of flavonoids in lung diseases. Molecules, 19(3), 3570–3595. https://doi.org/10.3390/molecules19033570
Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., Azman, A. S., Reich, N. G., & Lessler, J. (2020). The incubation period of coronavirus disease 2019 (CoVID-19) from publicly reported confirmed cases: Estimation and application. Annals of Internal Medicine, 172(9), 577–582. https://doi.org/10.7326/M20-0504
Ling, Y., Xu, S. B., Lin, Y. X., Tian, D., Zhu, Z. Q., Dai, F. H., Wu, F., Song, Z. G., Huang, W., Chen, J., Hu, B. J., Wang, S., Mao, E. Q., Zhu, L., Zhang, W. H., & Lu, H. Z. (2020). Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chinese Medical Journal, 133(9), 1039–1043. https://doi.org/10.1097/CM9.0000000000000774
Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
Lyseng-williamson, K. a, Perry, C. M., Allegra, C., Angiologia, S., Giovanni, O. S., Bergan, J., Jolla, L., Bouskela, E., Pesquisas, L. De, Janeiro, R. De, & Clement, D. L. (2003). A Review of its Use in Chronic Venous Insufficiency , Venous Ulcers and Haemorrhoids1. Lyseng-williamson K a, Perry CM, Allegra C, Angiologia S, Giovanni OS, Bergan J, et al. A Review of its Use in Chronic Venous Insufficiency , Venous Ulcers and Haemorrh. 63(1), 71–100.
Ma, X. H., Shi, Z., Tan, C., Jiang, Y., Go, M. L., Low, B. C., & Chen, Y. Z. (2010). In-silico approaches to multi-target drug discovery computer aided multi-target drug design, multi-target virtual screening. Pharmaceutical Research, 27(5), 739–749. https://doi.org/10.1007/s11095-010-0065-2
Marcou, G., & Rognan, D. (2007). Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. Journal of Chemical Information and Modeling, 47(1), 195–207. https://doi.org/10.1021/ci600342e
Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., & Manson, J. J. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, 395(10229), 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0
Nagasako-Akazome, Y. (2013). Safety of High and Long-term Intake of Polyphenols. In Polyphenols in Human Health and Disease (Vol. 1). Elsevier Inc. https://doi.org/10.1016/B978-0-12-398456-2.00058-X
Nielsen, I. L. F., Chee, W. S. S., Poulsen, L., Offord-cavin, E., Rasmussen, S. E., Frederiksen, H., Enslen, M., Barron, D., Horcajada, M., & Williamson, G. (2006). Nutrient Physiology , Metabolism , and Nutrient-Nutrient Interactions Bioavailability Is Improved by Enzymatic Modification of the Citrus. J Nutr, 136(October 2005), 404–408.
Olivero-Verbel, J., & Pacheco-Londoño, L. (2002). Structure-activity relationships for the anti-HIV activity of flavonoids. Journal of Chemical Information and Computer Sciences, 42(5), 1241–1246. https://doi.org/10.1021/ci020363d
Panigrahy, D., Gilligan, M. M., Huang, S., Gartung, A., Cortés-Puch, I., Sime, P. J., Phipps, R. P., Serhan, C. N., & Hammock, B. D. (2020). Inflammation resolution: a dual-pronged approach to averting cytokine storms in COVID-19? Cancer and Metastasis Reviews, 39(2), 337–340. https://doi.org/10.1007/s10555-020-09889-4
Peterson, L. E. (n.d.). rin t n ot pe er r ev Pr ep rin t n ot pe er ed.
Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109(February), 102433. https://doi.org/10.1016/j.jaut.2020.102433
Russo, R., Chandradhara, D., & De Tommasi, N. (2018). Comparative bioavailability of two diosmin formulations after oral administration to healthy volunteers. Molecules, 23(9). https://doi.org/10.3390/molecules23092174
Rut, W., Lv, Z., Zmudzinski, M., Patchett, S., Nayak, D., Snipas, S. J., Oualid, F. El, Huang, T. T., Bekes, M., Drag, M., & Olsen, S. K. (2020). Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti–COVID-19 drug design. Science Advances, 6(42), 1–13. https://doi.org/10.1126/sciadv.abd4596
Sasaki, F., & Yokomizo, T. (2019). The leukotriene receptors as therapeutic targets of inflammatory diseases. International Immunology, 31(9), 607–615. https://doi.org/10.1093/intimm/dxz044
Schewe, T., Kühn, H., & Sies, H. (2002). Flavonoids of cocoa inhibit recombinant human 5-lipoxygenase. Journal of Nutrition, 132(7), 1825–1829. https://doi.org/10.1093/jn/132.7.1825
Septiana, E. (2020). Prospek senyawa bahan alam sebagai antivirus dalam menghambat SARS-CoV-2. BioTrends, 11(1), 30–38.
Shaikh, M. S. I., Derle, N. D., & Bhamber, R. (2012). Permeability enhancement techniques for poorly permeable drugs: A review. Journal of Applied Pharmaceutical Science, 2(7), 34–39. https://doi.org/10.7324/JAPS.2012.2705
Shalkami, A. S., Hassan, M. I. A., & Bakr, A. G. (2018). Anti-inflammatory, antioxidant and anti-apoptotic activity of diosmin in acetic acid-induced ulcerative colitis. Human and Experimental Toxicology, 37(1), 78–86. https://doi.org/10.1177/0960327117694075
Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91–98. https://doi.org/10.1016/j.jare.2020.03.005
Shin, D., Mukherjee, R., Grewe, D., Bojkova, D., Baek, K., Bhattacharya, A., Schulz, L., Widera, M., Mehdipour, A. R., Tascher, G., Geurink, P. P., Wilhelm, A., van der Heden van Noort, G. J., Ovaa, H., Müller, S., Knobeloch, K. P., Rajalingam, K., Schulman, B. A., Cinatl, J., … Dikic, I. (2020). Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 587(7835), 657–662. https://doi.org/10.1038/s41586-020-2601-5
Smeitink, J., Jiang, X., Pecheritsyna, S., Renkema, H., Maanen, R. Van, & Beyrath, J. (2020). Hypothesis : mPGES-1-derived Prostaglandin E2 , a so far missing link in COVID-19 pathophysiology ? April, 1–19. https://doi.org/10.20944/preprints202004.0180.v1
Sorzano, C. O. S., Crisman, E., Carazo, J. M., & León, R. (2020). Multitarget virtual screening for drug repurposing in COVID19. ChemRxiv, 1–18. https://doi.org/10.26434/chemrxiv.12652997
Tahir, M., Rehman, M. U., Lateef, A., Khan, R., Khan, A. Q., Qamar, W., Ali, F., O’Hamiza, O., & Sultana, S. (2013). Diosmin protects against ethanol-induced hepatic injury via alleviation of inflammation and regulation of TNF-α and NF-κB activation. Alcohol, 47(2), 131–139. https://doi.org/10.1016/j.alcohol.2012.12.010
Talevi, A. (2015). Multi-target pharmacology: Possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Frontiers in Pharmacology, 6(SEP), 1–7. https://doi.org/10.3389/fphar.2015.00205
Tanaka, T., Makita, H., Ohnishi, M., Mori, H., Satoh, K., Hara, A., Sumida, T., Fukutani, K., Tanaka, T., & Ogawa, H. (1997). Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis in rats by flavonoids diosmin and hesperidin, each alone and in combination. Cancer Research, 57(2), 246–252.
Tomás-Navarro, M., Vallejo, F., Borrego, F., & Tomás-Barberán, F. A. (2014). Encapsulation and micronization effectively improve orange beverage flavanone bioavailability in humans. Journal of Agricultural and Food Chemistry, 62(39), 9458–9462. https://doi.org/10.1021/jf502933v
Ullrich, S., & Nitsche, C. (2020). The SARS-CoV-2 main protease as drug target. Bioorganic and Medicinal Chemistry Letters, 30(17), 127377. https://doi.org/10.1016/j.bmcl.2020.127377
Veronese, N., Demurtas, J., Yang, L., Tonelli, R., Barbagallo, M., Lopalco, P., Lagolio, E., Celotto, S., Pizzol, D., Zou, L., Tully, M. A., Ilie, P. C., Trott, M., López-Sánchez, G. F., & Smith, L. (2020). Use of corticosteroids in Coronavirus disease 2019 pneumonia: A systematic review of the literature. Frontiers in Medicine, 7(April), 1–6. https://doi.org/10.3389/fmed.2020.00170
von Rintelen, K., Arida, E., & Häuser, C. (2017). A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Research Ideas and Outcomes, 3. https://doi.org/10.3897/rio.3.e20860
Wen, C. C., Kuo, Y. H., Jan, J. T., Liang, P. H., Wang, S. Y., Liu, H. G., Lee, C. K., Chang, S. T., Kuo, C. J., Lee, S. S., Hou, C. C., Hsiao, P. W., Chien, S. C., Shyur, L. F., & Yang, N. S. (2007). Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of Medicinal Chemistry, 50(17), 4087–4095. https://doi.org/10.1021/jm070295s
Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., Xia, Z., Tan, W., Cheng, G., & Jiang, T. (2020). Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host and Microbe, 27(3), 325–328. https://doi.org/10.1016/j.chom.2020.02.001
Wu, C., Chen, X., Cai, Y., Xia, J., Zhou, X., Xu, S., Huang, H., Zhang, L., Zhou, X., Du, C., Zhang, Y., Song, J., Wang, S., Chao, Y., Yang, Z., Xu, J., Zhou, X., Chen, D., Xiong, W., … Song, Y. (2020). Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Internal Medicine, 180(7), 934–943. https://doi.org/10.1001/jamainternmed.2020.0994
Xiao, S., Liu, W., Bi, J., Liu, S., Zhao, H., Gong, N., Xing, D., Gao, H., & Gong, M. (2018). Anti-inflammatory effect of hesperidin enhances chondrogenesis of human mesenchymal stem cells for cartilage tissue repair. Journal of Inflammation (United Kingdom), 15(1), 1–8. https://doi.org/10.1186/s12950-018-0190-y
Yan, X., Hao, Q., Mu, Y., Timani, K. A., Ye, L., Zhu, Y., & Wu, J. (2006). Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein. International Journal of Biochemistry and Cell Biology, 38(8), 1417–1428. https://doi.org/10.1016/j.biocel.2006.02.003
Yeh, C. C., Kao, S. J., Lin, C. C., Wang, S. Der, Liu, C. J., & Kao, S. Te. (2007). The immunomodulation of endotoxin-induced acute lung injury by hesperidin in vivo and in vitro. Life Sciences, 80(20), 1821–1831. https://doi.org/10.1016/j.lfs.2007.01.052
Yi, L., Li, Z., Yuan, K., Qu, X., Chen, J., Wang, G., Zhang, H., Luo, H., Zhu, L., Jiang, P., Chen, L., Shen, Y., Luo, M., Zuo, G., Hu, J., Duan, D., Nie, Y., Shi, X., Wang, W., … Xu, X. (2004). Small Molecules Blocking the Entry of Severe Acute Respiratory Syndrome Coronavirus into Host Cells. Journal of Virology, 78(20), 11334–11339. https://doi.org/10.1128/jvi.78.20.11334-11339.2004
You, K. M., Jong, H. G., & Kim, H. P. (1999). Inhibition of cyclooxygenase/lipoxygenase from human platelets by polyhydroxylated/methoxylated flavonoids isolated from medicinal plants. Archives of Pharmacal Research, 22(1), 18–24. https://doi.org/10.1007/BF02976430
Yudi Utomo, R., & Meiyanto, E. (2020). Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection. 2(March), 1–8. https://doi.org/10.20944/preprints202003.0214.v1
Yuki, K., Fujiogi, M., & Koutsogiannaki, S. (2020). COVID-19 pathophysiology: A review. Clinical immunology, 215, 108427.
Zehra, Z., Luthra, M., Manaal, S., Shamsi, A., Gaur, N. A., & Islam, A. (2020). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information . January.
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395(10229), 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3
Published
2023-12-15
How to Cite
Nugroho, A. A., Hadi, M. S., Adianto, C., Putra, J. A. K., Purnomo, H., & Fakhrudin, N. (2023). Molecular Docking and ADMET Prediction Studies of Flavonoids as Multi-target Agents in COVID-19 Therapy: Anti-inflammatory and Antiviral Approaches. Indonesian Journal of Pharmacy, 34(4), 651-664. https://doi.org/10.22146/ijp.4126
Section
Research Article