Vitamin D3 and the Molecular Pathway of Skin Aging

  • Adeltrudis Adelsa Danimayostu Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, D. I. Yogyakarta 55281, Indonesia/Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Jalan Veteran, Malang, 65145, Indonesia
  • Ronny Martien Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, D. I. Yogyakarta 55281, Indonesia
  • Endang Lukitaningsih Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, D. I. Yogyakarta 55281, Indonesia
  • Retno Danarti Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/ Dr. Sardjito Hospital. Gedung Radiopoetro Lantai 3, Jalan Farmako Sekip Utara Yogyakarta 55281, Indonesia.
Keywords: elasticity, collagen, matrix metalloproteinases, skin aging, vitamin D3


Many women pay attention to skin aging. Signs of aging such as lines, wrinkles, dry skin, hyperpigmentation, and loss of elasticity affect skin appearance and self-confidence. Age, lifestyle, and particularly UV irradiation stimulate reactive oxygen species (ROS) production. ROS induces the breakdown of collagen through matrix metalloproteinases (MMPs). Collagen and elastin play a pivotal role in skin aging. They maintain skin integrity, strength, and resiliency. Antioxidant and keratolytic agents are often used in anti-aging products, including several vitamins such as vitamin A, B, C and E. To date, several studies have been reported in the literature for the effects of vitamin D on collagen synthesis and MMPs inhibition. This review focuses on identifying and assessing the molecular pathways of vitamin D effects related to skin aging. The literature was collected from Google Scholar, Elsevier, Science Direct, PubMed, and Scopus databases and accessed between January 2019 and May 2022. The literature screening was conducted using keywords like “vitamin D3”, “collagen”, “matrix metalloproteinases”, “skin aging” and related to the study topic were included. The effect of vitamin D3 on MMPs inhibition (particularly on MMP-1, MMP-3, and MMP-9) has been widely published. Several studies have reported that vitamin D increases collagen synthesis and clinically improves skin elasticity. However, there have been controversial results regarding how vitamin D3 affects transforming growth factor-β (TGF-β) correlated with skin elasticity by the molecular pathway. Therefore, it can be concluded that vitamin D3 is a potential alternative agent in improving skin aging.


Al Mheid, I., & Quyyumi, A. A. (2017). Vitamin D and Cardiovascular Disease: Controversy Unresolved. Journal of the American College of Cardiology, 70(1), 89–100.
Antal, A. S., Dombrowski, Y., Koglin, S., Ruzicka, T., & Schauber, J. (2011). Impact of vitamin D3 on cutaneous immunity and antimicrobial peptide expression. Dermato-Endocrinology, 3(1), 18–22.
Avila Rodríguez, M. I., Rodríguez Barroso, L. G., & Sánchez, M. L. (2018). Collagen: A review on its sources and potential cosmetic applications. Journal of Cosmetic Dermatology, 17(1), 20–26.
Azimzadeha, M., Shidfarc, F., Jazayeri, S., Hosseini, A., & Ranjbaran, F. (2020). Effect of vitamin D supplementation on klotho protein, antioxidant status and nitric oxide in the elderly: A randomized, double-blinded, placebocontrolled clinical trial. European Journal of Integrative Medicine, 20, 101089.
Bahar-Shany, K., Ravid, A., & Koren, R. (2010). Upregulation of MMP-9 production by TNFα in keratinocytes and its attenuation by vitamin D. Journal of Cellular Physiology, 222(3), 729–737.
Bakhshalizadeh, S., Amidi, F., Alleyassin, A., Soleimani, M., Shirazi, R., & Shabani Nashtaei, M. (2017). Modulation of steroidogenesis by vitamin D3 in granulosa cells of the mouse model of polycystic ovarian syndrome. Systems Biology in Reproductive Medicine, 63(3), 150–161.
Bakhshalizadeh, S., Amidi, F., Shirazi, R., & Shabani Nashtaei, M. (2018). Vitamin D3 regulates steroidogenesis in granulosa cells through AMP-activated protein kinase (AMPK) activation in a mouse model of polycystic ovary syndrome. Cell Biochemistry and Function, 36(4), 183–193.
Bikle, D. D. (2012). Protective actions of vitamin D in UVB induced skin cancer. Photochemistry and Photobiology Science, 11(12), 1808–1816.
Bikle, D. D. (2014). Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol., 21(3), 319–329.
Bikle, D. D. (2016). Extraskeletal actions of vitamin D. Ann N Y Acad Sci., 1376(1), 29–52.
Bikle, D. D., Xie, Z., & Tu, C. L. (2012). Calcium regulation of keratinocyte differentiation. Expert Rev Endocrinol Metab., 7(4), 461–472.
Bikle, Daniel D. (2012). Vitamin D and the skin: Physiology and pathophysiology. Rev Endocr Metab Disord, 13(1), 3–19.
Bocheva, G., Slominski, R. M., & Slominski, A. T. (2021). The impact of vitamin d on skin aging. International Journal of Molecular Sciences, 22(16), 1–18.
Brown, E. M. (2013). Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Practice and Research: Clinical Endocrinology and Metabolism, 27(3), 333–343.
Cao, C., Xiao, Z., Wu, Y., & Ge, C. (2020). Diet and skin aging—from the perspective of food nutrition. Nutrients, 12(3), 1–25.
Caraffa, A., Spinas, E., Kritas, S. K., Lessiani, G., Ronconi, G., Saggini, A., Antinolfi, P., Pizzicannella, J., Toniato, E., Theoharides, T. C., & Conti, P. (2016). Endocrinology of the skin: intradermal neuroimmune network, a new frontier. Journal of Biological Regulators and Homeostatic Agents, 30(2), 339–343.
Chang, S. W., & Lee, H. C. (2019). Vitamin D and health - The missing vitamin in humans. Pediatrics and Neonatology, 60(3), 237–244.
Cho, Y., Seo, C., Joo, S., Song, J., Cha, E., & Ohn, S. (2019). The association between postburn vitamin D deficiency and the biomechanical properties of hypertrophic scars. J Burn Care Res, 40(3), 274–280.
Combs Jr, G. F. (2008). Chapter 6: Vitamin D. In The Vitamins. Fundamental Aspects in Nutrition and Health (Third, pp. 145–175). Elsevier Inc.
Corduk, N., Abban, G., Yildirim, B., & Sarioglu-Buke, A. (2012). The effect of vitamin D on expression of TGF β1 in ovary. Experimental and Clinical Endocrinology and Diabetes, 120(8), 490–493.
Crew, K. D. (2013). Vitamin D: Are We Ready to Supplement for Breast Cancer Prevention and Treatment? ISRN Oncology, 2013, 1–22.
De Araújo, R., Lôbo, M., Trindade, K., Silva, D. F., & Pereira, N. (2019). Fibroblast Growth Factors: A Controlling Mechanism of Skin Aging. Skin Pharmacology and Physiology, 32(5), 275–282.
Díaz-Soto, G., Rocher, A., García-Rodríguez, C., Núñez, L., & Villalobos, C. (2016). Chapter Seven - The Calcium-Sensing Receptor in Health and Disease. In W. Kwang & L. Galluzzi (Eds.), International Review of Cell and Molecular Biology (Vol. 327). Academic Press.
Ding, J., Kwan, P., Ma, Z., Iwashina, T., Wang, J., Shankowsky, H. A., & Tredget, E. E. (2016). Synergistic effect of vitamin D and low concentration of transforming growth factor beta 1, a potential role in dermal wound healing. Burns, 42(6), 1277–1286.
Dixon, K. M., Tongkao-On, W., Sequeira, V. B., Carter, S. E., Song, E. J., Rybchyn, M. S., Gordon-Thomson, C., & Mason, R. S. (2013). Vitamin D and death by sunshine. International Journal of Molecular Sciences, 14(1), 1964–1977.
Dobak, J., Grzybowski, J., Liu, F. T., Landon, B., & Dobke, M. (1994). 1,25-Dihydroxyvitamin D3 increases collagen production in dermal fibroblasts. Journal of Dermatological Science, 8(1), 18–24.
Farage, M., Miller, K., Zouboulis, C., Pierard, G., & Maibach, H. (2012). Gender Differences in Skin Aging and the Changing Profile of the Sex Hormones with Age. Journal of Steroids & Hormonal Science, 03(02).
Ferrari, R. (2015). Writing narrative style literature reviews. Medical Writing, 24(4), 230–235.
Fischer, K. D., & Agrawal, D. K. (2014). Vitamin D regulating TGF-β induced epithelial-mesenchymal transition. In Respiratory Research (Vol. 15, Issue 1).
Franco, A. C., Aveleira, C., & Cavadas, C. (2022). Skin senescence: mechanisms and impact on whole-body aging. Trends in Molecular Medicine, 28(2), 97–109.
Fujimura, T., Moriwaki, S., Takema, Y., & Imokawa, G. (2000). Epidermal change can alter mechanical properties of hairless mouse skin topically treated with 1α, 25-dihydroxyvitamin D3. Journal of Dermatological Science, 24(2), 105–111.
Fujisaki, H., Futaki, S., Yamada, M., Sekiguchi, K., Hayashi, T., Ikejima, T., & Hattori, S. (2018). Respective optimal calcium concentrations for proliferation on type I collagen fibrils in two keratinocyte line cells, HaCaT and FEPE1L-8. Regenerative Therapy, 8, 73–79.
Gangula, P., Dong, Y. L., Al-Hendy, A., Richard-Davis, G., Valerie, M. R., Haddad, G., Millis, R., Nicholas, S. B., & Moseberry, D. (2013). Protective cardiovascular and renal actions of vitamin D and estrogen. Frontiers in Bioscience - Scholar, 5 S(1), 134–148.
Gil, Á., Plaza-Diaz, J., & Mesa, M. D. (2018). Vitamin D: Classic and Novel Actions. Annals of Nutrition and Metabolism, 72(2), 87–95.
Gkogkolou, P., & Böhm, M. (2012). Advanced glycation end products: Keyplayers in skin aging? Dermato-Endocrinology, 4(3), 259–270.
Gragnani, A., Cornick, S. Mac, Chominski, V., Ribeiro de Noronha, S. M., Alves Corrêa de Noronha, S. A., & Ferreira, L. M. (2014). Review of Major Theories of Skin Aging. Advances in Aging Research, 03(04), 265–284.
Greenhalgh, T., Thorne, S., & Malterud, K. (2018). Time to challenge the spurious hierarchy of systematic over narrative reviews? European Journal of Clinical Investigation, 48(6), 1–6.
Halder, S. K., Osteen, K. G., & Al-Hendy, A. (2013). Vitamin D3 inhibits expression and activities of matrix metalloproteinase-2 and -9 in human uterine fibroid cells. Human Reproduction, 28(9), 2407–2416.
Hasan, N., Sonnenschein, C., & Soto, A. M. (2019). Vitamin D3 constrains estrogen’s effects and influences mammary epithelial organization in 3D cultures. Scientific Reports, 9(1), 1–11.
Hemida, M. A., AbdElmoneim, N. A., Hewala, T. I., Rashad, M. M., & Abdaallah, S. (2019). Vitamin D Receptor in Breast Cancer Tissues and Its Relation to Estrogen Receptor Alpha (ER-α) Gene Expression and Serum 25-hydroxyvitamin D Levels in Egyptian Breast Cancer Patients: A Case-control Study. Clinical Breast Cancer, 19(3), e407–e414.
Hong, S. H., Lee, J. E., An, S. M., Shin, Y. Y., Hwang, D. Y., Yang, S. Y., Cho, S. K., & An, B. S. (2017). Effect of vitamin d3 on biosynthesis of estrogen in porcine granulosa cells via modulation of steroidogenic enzymes. Toxicological Research, 33(1), 49–54.
Kammeyer, A., & Luiten, R. M. (2015). Oxidation events and skin aging. Ageing Research Reviews, 21, 16–29.
Kheirouri, S., & Alizadeh, M. (2020). Vitamin D and advanced glycation end products and their receptors. Pharmacological Research, 158(May), 104879.
Kilmister, E. J., Paterson, C., Brasch, H. D., Davis, P. F., & Tan, S. T. (2019). The Role of the Renin-Angiotensin System and Vitamin D in Keloid Disorder—A Review. Frontiers in Surgery, 6(November), 1–12.
Kim, M., & Park, H. (2016). Molecular Mechanism of Skin Aging and Rejuvenation. In N. Shiomi (Ed.), Molecular Mechanisms of the Aging Process and Rejuvenation. IntechOpen.
Kim, S. H., Baek, M. S., Yoon, D. S., Park, J. S., Yoon, B. W., Oh, B. S., Park, J., & Kim, H. J. (2014). Vitamin D inhibits expression and activity of matrix metalloproteinase in human lung fibroblasts (HFL-1) cells. Tuberculosis and Respiratory Diseases, 77(2), 73–80.
Kinuta, K., Tanaka, H., Moriwake, T., Aya, K., Kato, S., & Seino, Y. (2000). Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology, 141(4), 1317–1324.
Kocic, H., Damiani, G., Stamenkovic, B., Tirant, M., Jovic, A., Tiodorovic, D., & Peris, K. (2019). Dietary compounds as potential modulators of microRNA expression in psoriasis. Therapeutic Advances in Chronic Disease, 10, 1–13.
Krishnan, A. V., Swani, S., & Feldman, D. (2012). The Potential Therapeutic Benefits of Vitamin D in the Treatment of Estrogen Receptor Positive Breast Cancer. Steroids, 77(11), 1107–1112.
Kwon, K. R., Alam, M. B., Park, J. H., Kim, T. H., & Lee, S. H. (2019). Attenuation of UVB-induced photo-aging by polyphenolic-rich spatholobus suberectus stem extract via modulation of MAPK/AP-1/MMPs signaling in human keratinocytes. Nutrients, 11(6).
Lago, J. C., & Puzzi, M. B. (2019). The effect of aging in primary human dermal fibroblasts. PLoS ONE, 14(7), 1–14.
Lee, D. E., Trowbridge, R. M., Ayoub, N. T., & Agrawal, D. K. (2015). High-mobility group box protein-1, matrix metalloproteinases, and Vitamin D in keloids and hypertrophic scars. Plastic and Reconstructive Surgery - Global Open, 3(6), 1–9.
Lee, S. A., Yang, H. W., Um, J. Y., Shin, J. M., Park, I. H., & Lee, H. M. (2017). Vitamin D attenuates myofibroblast differentiation and extracellular matrix accumulation in nasal polyp-derived fibroblasts through smad2/3 signaling pathway. Scientific Reports, 7(1), 1–12.
Liu, Z., Li, Y., Song, H., He, J., Li, G., Zheng, Y., & Li, B. (2019). Collagen peptides promote photoaging skin cell repair by activating the TGF-β/Smad pathway and depressing collagen degradation. Food and Function, 10(9), 6121–6134.
Ma, D., & Peng, L. (2019). Vitamin D and pulmonary fibrosis: a review of molecular mechanisms. International Journal of Clinical and Experimental Pathology, 12(9), 3171–3178.
Meredith, A., Boroomand, S., Carthy, J., Luo, Z., & McManus, B. (2015). 1,25 dihydroxyvitamin D3 inhibits TGFβ1-mediated primary human cardiac myofibroblast activation. In PLoS ONE (Vol. 10, Issue 6).
Meza-Meza, M. R., Ruiz-Ballesteros, A. I., & de la Cruz-Mosso, U. (2020). Functional effects of vitamin D: From nutrient to immunomodulator. Critical Reviews in Food Science and Nutrition, 62(11), 3042–3062.
Mostafa, W. Z., & Hegazy, R. A. (2015). Vitamin D and the skin: Focus on a complex relationship: A review. J Adv Res, 6(6), 793–804.
Muzumdar, S., & Ferenczi, K. (2021). Nutrition and youthful skin. Clinics in Dermatology, 39(5), 796–808.
Nair, R., & Maseeh, A. (2012). Vitamin D: The “sunshine” vitamin. Journal of Pharmacology and Pharmacotherapeutics, 3(2), 118–127.
Philips, N., Auler, S., Hugo, R., & Gonzalez, S. (2011). Beneficial regulation of matrix metalloproteinases for skin health. Enzyme Research, 2011(1).
Philips, N., Ding, X., Kandalai, P., Marte, I., Krawczyk, H., & Richardson, R. (2019). The Beneficial Regulation of Extracellular Matrix and Heat Shock Proteins, and the Inhibition of Cellular Oxidative Stress E ects and Inflammatory Cytokines by 1α,25 dihydroxyvitaminD3 in Non-Irradiated and Ultraviolet Radiated Dermal Fibroblasts. Cosmetics, 6(46), 1–15.
Pike, J. W., & Meyer, M. B. (2012). The Vitamin D Receptor: New Paradigms for the Regulation of Gene Expression by 1,25-Dihydroxyvitamin D 3. Rheumatic Disease Clinics of North America, 38(1), 13–27.
Pittayapruek, P., Meephansan, J., Prapapan, O., Komine, M., & Ohtsuki, M. (2016). Role of matrix metalloproteinases in Photoaging and photocarcinogenesis. International Journal of Molecular Sciences, 17(6).
Qian, Z., Lenardo, M. J., & Baltimore, D. (2017). 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell, 168(1–2), 37–57.
Quan, T., & Fisher, G. J. (2015). Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: A mini-review. Gerontology, 61(5), 427–434.
Rahrovan, S., Fanian, F., Mehryan, P., Humbert, P., & Firooz, A. (2018). Male versus female skin: What dermatologists and cosmeticians should know. International Journal of Women’s Dermatology, 4(3), 122–130.
Ramos-e-Silva, M., Celem, L. R., Ramos-e-Silva, S., & Fucci-da-Costa, A. P. (2013). Anti-aging cosmetics: Facts and controversies. Clinics in Dermatology, 31(6), 750–758.
Reddy, K. K., & Gilchrest, B. A. (2011). The molecular basis of cutaneous aging. Expert Review of Dermatology, 6(5), 525–536.
Regan, J. C., & Partridge, L. (2013). Gender and longevity: Why do men die earlier than women? Comparative and experimental evidence. Best Practice and Research: Clinical Endocrinology and Metabolism, 27(4), 467–479.
Reilly, D. M., & Lozano, J. (2021). Skin collagen through the lifestages: importance for skin health and beauty. Plastic and Aesthetic Research, 2021.
Shin, H. M., Lee, Y., Kima, M.-K., Dong, H. L., & Jin, H. C. (2019). UV increases skin-derived 1α,25-dihydroxyvitamin D3 production, leading to MMP-1 expression by altering the balance of vitamin D and cholesterol synthesis from 7-dehydrocholesterol. Journal of Steroid Biochemistry and Molecular Biology, 195, 1–10.
Shin, J. W., Kwon, S. H., Choi, J. Y., Na, J. I., Huh, C. H., Choi, H. R., & Park, K. C. (2019). Molecular mechanisms of dermal aging and antiaging approaches. International Journal of Molecular Sciences, 20(9).
Stojiljković, D., Pavlović, D., & Arsić, I. (2014). Oxidative stress, skin aging and antioxidant therapy. Acta Facultatis Medicae Naissensis, 31(4), 207–217.
Swami, S., Krishnan, A. V., Peng, L., Lundqvist, J., & Feldman, D. (2013). Transrepression of the estrogen receptor promoter by calcitriol in human breast cancer cells via two negative vitamin D response elements. Endocrine-Related Cancer, 20(4), 565–577.
Tobin, D. J. (2017). Introduction to skin aging. Journal of Tissue Viability, 26(1), 37–46.
Umar, M., Sastry, K. S., Al Ali, F., Al-Khulaifi, M., Wang, E., & Chouchane, A. I. (2018). Vitamin D and the Pathophysiology of Inflammatory Skin Diseases. Skin Pharmacology and Physiology, 31(2), 74–86.
Usategui, A., Criado, G., Del Rey, M. J., Faré, R., & Pablos, J. L. (2014). Topical vitamin D analogue calcipotriol reduces skin fibrosis in experimental scleroderma. Archives of Dermatological Research, 306(8), 757–761.
Van Doren, S. R. (2015). Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol, 0, 224–231.
Wang, L. F., Tai, C. F., Chien, C. Y., Chiang, F. Y., & Chen, J. Y. F. (2015). Vitamin D decreases the secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 in fibroblasts derived from Taiwanese patients with chronic rhinosinusitis with nasal polyposis. Kaohsiung Journal of Medical Sciences, 31(5), 235–240.
Weikum, E. R., Liu, X., & Ortlund, E. A. (2018). The nuclear receptor superfamily: A structural perspective. Protein Science, 27(11), 1876–1892.
Zhang, S., & Duan, E. (2018). Fighting against Skin Aging: The Way from Bench to Bedside. Cell Transplantation, 27(5), 729–738.
How to Cite
Danimayostu, A. A., Martien, R., Lukitaningsih, E., & Danarti, R. (2023). Vitamin D3 and the Molecular Pathway of Skin Aging. Indonesian Journal of Pharmacy, 34(3).
Review Article